

July 26, 2019

Project No. 18184-01

Mr. Donald Lamm *Diamond Star Associates* 4100 MacArthur Blvd., Suite 330 Newport Beach, California 92660

Subject: Preliminary Geotechnical Report for Proposed Development of Tentative Tract Map 19035, Mission Viejo, California

In accordance with your request and authorization, LGC Geotechnical, Inc. has prepared a preliminary geotechnical report for proposed development of the Tentative Tract Map 19035, located adjacent to El Toro Road within the City of Mission Viejo, California. The purpose of our study was to evaluate the existing onsite geotechnical conditions and to confirm that the site can be developed from a geotechnical perspective.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully Submitted,

LGC Geotechnical, Inc.

Dennis Boratynec, GE 2770 Vice President

Katie Maes, CEG 2216 Project Geologist

BTZ/DJB/KTM/amm

Distribution: (4) Addressee (3 wet-signed copies & electronic copy)

TABLE OF CONTENTS

<u>on</u>		<u>Page</u>
INTR	ODUCTION	
1.1		
1.2		
1.3	8	
1.4		
1.5	0	
1.6		
GEO 1	FECHNICAL CONDITIONS	6
2.1		
2.2		
2.3		
2.4	5	
2.5	Faulting and Seismic Hazards	8
	2.5.1 Liquefaction and Dynamic Settlement	8
	2.5.2 Lateral Spreading	9
	2.5.3 Earthquake Induced Landslide	9
2.6	Seismic Design Criteria	9
2.7	Soil Shear Strength Parameters	
2.8	Slope Stability Analyses	
2.9	Temporary Stability	
2.10	Rippability and Oversized Material	
2.11	Expansion Potential	
2.12	Soil Corrosivity	
2.13	0	
2.14	Infiltration Potential	
CONC	CLUSIONS	14
PREL	IMIANARY RECOMMENDATIONS	16
LIMI	TATIONS	18
	INTR 1.1 1.2 1.3 1.4 1.5 1.6 GEOT 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 CONO PREI	INTRODUCTION 1.1 Purpose and Scope of Services 1.2 Existing Conditions 1.3 Project Description 1.4 Background 1.5 Subsurface Geotechnical Evaluation 1.6 Laboratory Testing GEOTECHNICAL CONDITIONS 2.1 Regional Geology 2.2 Site-Specific Geology 2.2.1 Artificial Fill - Older (Map Symbol - Afo) 2.2.3 Quaternary Alluvium and Colluvium (Map Symbol - Qal) 2.2.4 Quaternary Landslide Deposit (Map Symbol - Qls) 2.2.5 Quaternary Puente Formation (Map Symbol - Qls) 2.2.4 Groundwater 2.5 Faulting and Seismic Hazards 2.5.1 Liquefaction and Dynamic Settlement 2.5.2 Lateral Spreading 2.5.3 Earthquake Induced Landslide 2.6 Seismic Design Criteria 2.7 Soil Shear Strength Parameters 2.8 Slope Stability Analyses 2.9 Temporary Stability 2.10 Rippability and Oversized Material 2.11 Expansion Potential 2.12 <

TABLE OF CONTENTS (cont'd)

LIST OF ILLUSTRATIONS, TABLES, AND APPENDICES

<u>Figures</u>

Figure 1 – Site Location Map (Page 5)

<u>Sheets</u>

Sheet 1 – Geotechnical Map (In Pocket) Sheet 2 – Geotechnical Cross Section (In Pocket)

<u>Tables</u>

Table 1 – Seismic Design Parameters (Page 10) Table 2 – Soil Shear Strength Parameters for Static Slope Stability Analysis (Page 11)

<u>Appendices</u>

Appendix A – References

Appendix B – Logs of Exploratory Borings, Trenches, and Infiltration Data

Appendix C – Laboratory Test Results

Appendix D – Slope Stability Analyses

1.0 INTRODUCTION

1.1 <u>Purpose and Scope of Services</u>

This report presents the results of our preliminary geotechnical evaluation for the proposed residential development located southwest of the intersection of El Toro Road and the 241 Eastern Transportation Corridor located in the City of Mission Viejo, California. The preliminary grading plan as reviewed in this report was prepared by Hunsaker and Associates, Inc. (Hunsaker, 2019).

The purpose of our study was to evaluate the existing onsite geotechnical conditions and to confirm that the site can be developed from a geotechnical perspective. As part of this report, we have: 1) reviewed available geotechnical reports, geologic maps, and air photos pertinent to the site (Appendix A); 2) performed a subsurface geotechnical evaluation of the site; 3) prepared a geotechnical map of the site incorporating available geotechnical information; 4) prepared geotechnical cross-sections depicting the interpreted subsurface conditions of the site relative to the proposed design; 5) performed slope stability analysis in support of the proposed design; and 6) prepared this summary report presenting our preliminary findings and conclusions for the proposed development.

The findings and conclusions presented herein should be considered preliminary and will need to be confirmed as part of a grading plan review report to be provided at a later date. It should be noted that LGC Geotechnical does not provide environmental consulting services.

1.2 <u>Existing Conditions</u>

The subject site consists of an approximately 12.5-acre hillside area at the location depicted on the Site Location Map, Figure 1 (Page 5). The moderately vegetated site is currently vacant land with several utility easements including a 200-feet wide Edison powerline easement at the eastern side of the area, and communication utility easements across the site and along the southern-most ridgetop that bounds the site at the south.

An Edison tower and set of power poles is located at the top of the hill at the southeast corner of the site, and the powerlines span the site within the easement, to another Edison tower and poles located offsite to the north. A cell tower "tree" and associated access road are located at the top of the ridgeline at the southern boundary of the site, and a residential development is located over the ridgeline at the base of the descending hill to the south. The existing tract is generally at lower elevations than the east-west trending ridgetop that forms the southern boundary of the site, and that development is separated from the site by a descending manufactured fill slope.

A large design cut slope for the Foothill Transportation Corridor (FTC) Highway 241, was constructed just east of the property boundary, with a significant excavation including removal of the original "top-of-hill" for the area. The FTC Highway 241 alignment passes at the northeast corner of the site as it transitions to an overpass bridge for El Toro Road. The northern boundary of the site consists of El Toro Road and a storage facility across the road that extends down to Aliso Creek. Two roadcut slopes to El Toro Road are provided with v-

ditches that flow to a drainage underpass from the small canyon at the north-central portion of the site. The western boundary of the site consists of a low-angle, cut-over fill slope with v-ditches, and a native slope with a small basin at the base, both adjacent to the existing parking lot for the office building located at 20532 El Toro Road.

Overall the site has moderate to significant relief, the lowest in the northwest at an approximate elevation of 845 feet, the highest at the southeastern corner up to an approximate elevation of 1020 feet.

1.3 <u>Project Description</u>

The proposed project consists of construction of an approximately 3.3-acre area of developable pad, set within hillside terrain constructed with 2:1 (Horizontal to Vertical) slopes and a Mechanically Stabilized Earth (MSE) retaining wall. The plan by Hunsaker and Associates, Inc., (Hunsaker, 2019) is presented as the base for the Geotechnical Map (Sheet 1) and has been the basis of this evaluation. Access to the proposed development would be provided from an entrance road, "A" Drive, off El Toro Road at the northeast corner of the site. A water quality basin is proposed to be located just east of the entrance road. It is our understanding that a multi-family residential development is currently proposed for the site.

The maximum proposed design cut and fill slopes are approximately 85 and 65 feet, respectively. The grading plan depicts planned cuts and fills (not including required remedial grading) up to approximately 45 and 50 feet, respectively. An MSE retaining wall approximately 12 feet in height is proposed within the development at middle of the design fill slope adjacent to El Toro Road.

1.4 <u>Background</u>

The geotechnical background of the site is based on review of available regional geologic data, geotechnical reports and portions of reports for the surrounding areas, and historic aerial photographs and stereoscopic pairs of photographs (Continental, 2019). Information from previous geotechnical investigations and grading reports for surrounding developments from the 1980's and 1990's has been reviewed, and pertinent data added to the current evaluation.

A preliminary geotechnical evaluation for the areas west and north of the site was performed in 1991 by Leighton and Associates, Inc. (Leighton, 1991), as part of a grading plan review for the proposed Lots 2 & 3, of Tentative Tract 14602 to the west, and Lot 4 of Tentative Tract 14496 to the north. A supplemental grading plan review including revisions to the plan for the same areas, was provided in the referenced report (Leighton, 1992; Incomplete Copy). Information obtained from the Leighton reports included large-diameter boring information by others from various stages of investigation for the adjacent developments such as the Foothill Transportation Corridor (FTC), and the residential development to the south. Selected borings and an exploratory trench by others have been included in the current evaluation.

Lots 2, 3, & 4 were rough graded during 1992 through 1993 under observation and testing by Leighton, as reported in the referenced as-graded report (Leighton, 1993). Selected information including the approximate dimensions of the off-site buttress keyway for Lot 4

(currently developed as a storage facility across El Toro Road) and keyway details for Lot 3 (existing parking lot), were reviewed and incorporated into the current evaluation. Notably, the keyway constructed for Lot 3 at the existing west-facing manufactured cut over fill slope, was the result of a backcut failure that occurred during excavation for a steeper slope that was subsequently revised to the lower-angle slope that was eventually graded to today's topography (Leighton, 1992).

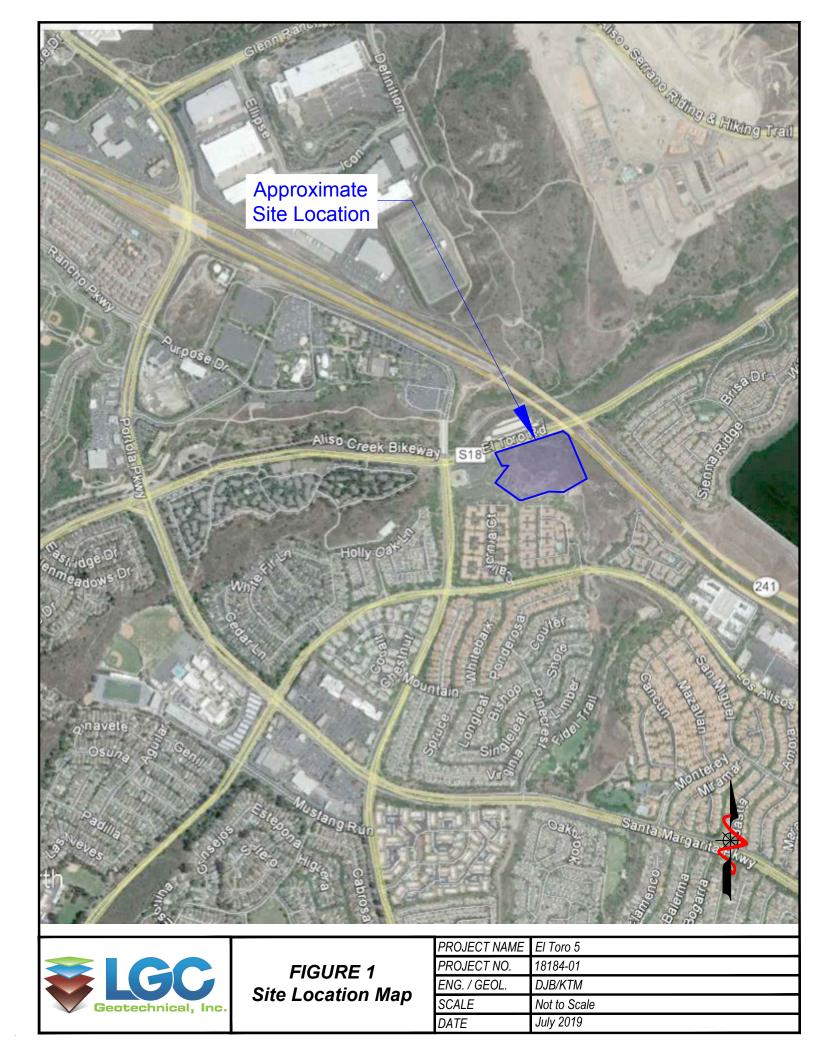
In 1999, a geotechnical evaluation was performed for the adjacent mass-graded building pad (Lots 2 & 3 of Tentative Tract 14602) located west of the site. The referenced geotechnical update and finish grade report by Anthony-Taylor Consultants (1999) provided limited additional surficial geotechnical information. Rough grading of the pad was performed under observation and testing by MTG_L , as detailed in their referenced report (MTG_L , 2001). At that time, the building pad was over-excavated, and retaining walls, parking areas, and associated improvements were constructed.

1.5 <u>Subsurface Geotechnical Evaluation</u>

LGC Geotechnical performed a subsurface geotechnical evaluation of the site consisting of the excavation of three large-diameter bucket auger borings to evaluate onsite geotechnical conditions downhole-logged by an engineering geologist, and excavation of three exploratory trenches. The bucket auger borings (BA-1 through BA-3) were drilled by Al-Roy Drilling under subcontract to LGC Geotechnical. The maximum depth of the borings was approximately 62 feet below existing grade. Boring BA-1 was terminated at a depth of approximately 44 feet below existing grade due to auger refusal. The bucket auger borings were excavated to evaluate the geologic structure of the bedrock materials and to obtain samples for laboratory testing. The large-diameter boreholes were surface logged during excavation and downhole logged by an engineering geologist in order to obtain structural geologic information. Borings were subsequently backfilled with cuttings and tamped.

Three exploratory trenches were excavated by backhoe and the trenches logged by a geologist. One trench was used as an infiltration test location in order to pre-soak and perform a subsequent preliminary test of potential for subsurface infiltration at the site in accordance with the referenced guidelines (County of Orange, 2017).

The approximate locations of borings are shown on the Geotechnical Map (Sheet 1). Boring logs are presented in Appendix B.


1.6 <u>Laboratory Testing</u>

Representative bulk and driven samples were retained for laboratory testing during our field evaluation. Laboratory testing included in-situ moisture content and in-situ dry density, Atterberg Limits, direct shear, fully softened torsional ring shear, expansion index, laboratory compaction and corrosion (sulfate, chloride, pH and minimum resistivity).

The following is a summary of the laboratory test results.

- Dry density of the samples collected ranged from approximately 82 pounds per cubic foot (pcf) to 115 pcf, with an average of 98 pcf. Field moisture contents ranged from approximately 15 percent to 37 percent, with an average of 23 percent.
- Two Atterberg Limit (liquid limit and plastic limit) tests were performed. Results indicated Plasticity Index values of 41 and 46.
- Direct shear tests were performed on select driven samples. The plots are provided in Appendix C.
- A fully softened torsional ring shear test was performed on a grab sample of site clay materials. The plot is provided in Appendix C.
- Two Expansion Index (EI) tests were performed. Results indicate EI value of 97 and 92, corresponding to "High" expansion potential.
- Laboratory compaction testing of two bulk samples indicated maximum dry density values of 105.5 and 97.0 pounds per cubic foot (pcf) and optimum moisture contents of 8.5 and 23.5 percent, respectively.
- Corrosion testing indicated soluble sulfate contents of approximately 0.042 and 0.03 percent, chloride contents of 380 and 780 parts per million (ppm), pH values of 7.4 and 6.8, and minimum resistivity values of 365 and 279 ohm-cm.

A summary of the results is presented in Appendix C. The moisture and dry density test results are presented on the boring logs in Appendix B.

2.0 GEOTECHNICAL CONDITIONS

2.1 <u>Regional Geology</u>

The subject site is located within the foothills of the Santa Ana Mountains, part of the Peninsular Ranges Geomorphic Province of California. The Santa Ana Mountains are bounded by the major regional northwest-trending faults including the Newport- Inglewood Offshore fault to the south and the Elsinore Fault System to the north. Tertiary Puente Formation underlies the site; the regional sedimentary deposit consists of gently west-dipping marine siltstone and sandstone with few claystone beds (Morton, 2004). The nearby Aliso Creek drainage that flows to the southwest dissects the foothills within a moderately broad alluvial channel.

2.2 <u>Site-Specific Geology</u>

The subject site is located within the uplifted bedrock that forms the low hills of surrounding foothills of the Santa Ana mountains. Tertiary Puente Formation underlies the site; the regional sedimentary deposit consists of gently west-dipping marine siltstone and sandstone with few claystone beds (Morton, 2004). Two existing landslides derived from this material have been identified within the limits of the site. Also, an alluvial deposit, colluvium (thick topsoil), and older artificial fills mantle portions of the site. A brief description of these geologic units is presented in the following sections (from youngest to oldest) and their approximate lateral extents are depicted on the site Geotechnical Map (Sheet 1).

2.2.1 Artificial Fill - Older (Map Symbol - Afo)

Older artificial fill soils encountered at the west boundary of the site are documented structural fill, reportedly having been placed in relatively thin lifts, at near optimum moisture content, and compacted with heavy construction equipment to achieve a minimum relative compaction of at least 90 percent (Leighton, 1993). The material reportedly consists of variable layers of sandy silt, clayey silt, some sand with scattered gravel, generally moist, stiff to very stiff/dense.

2.2.3 Quaternary Alluvium and Colluvium (Map Symbol - Qal)

Quaternary alluvium was observed in the small north-central canyon; the material is an accumulation of eroded materials from the surrounding slopes. The thick accumulation of topsoil/colluvium on the ascending slopes (unit not mapped) likely interfingers with the alluvium. The alluvium generally consists of dark to moderate brown, sandy silt and sandy clays with minor amounts of gravel, dry to moist, stiff.

2.2.4 Quaternary Landslide Deposit (Map Symbol - Qls)

Quaternary landslide deposits were encountered at the site as observed during the recent subsurface investigation and as previously noted by others during development of surrounding areas. The materials were observed to be similar to Puente Formation materials but fractured and sheared as described in the section below and on boring logs (Appendix B). Based on carbon dating performed by others during stabilization of the lower offsite portion of landslides, the ages of the landslides on site range from 11,000 years old to 24,700 years old (Leighton, 1991).

2.2.5 <u>Tertiary Puente Formation (Map Symbol – Tp)</u>

The sedimentary bedrock unit that underlies the site is the Tertiary-age Puente Formation. The Puente Formation was derived from a shallow marine depositional environment. The formation is regionally broken into four members that vary in dominant material type, undifferentiated with this evaluation. Previous evaluations and the regional geologic map generally agree that the site includes the Puente Formation, Soquel Member (Morton, 2004) and the Puente Formation, La Vida Member (Leighton, 1991). The members have similarities but the main descriptive difference between the units is that the Soquel Member has more sandstone that the underlying La Vida Member. The La Vida Member is more likely to be the dominant bedrock formation member at the site based on the materials observed during down-hole logging of borings. The material generally consists of thinly interbedded siltstone and clayey siltstone, and few sandstone beds including rare, very thin beds of vitric tuff (volcanic ash deposit). The material as observed was typically light gray, well-bedded, locally shaley, with abundant foraminifera, very stiff to hard, and moist.

2.3 <u>Geologic Structure</u>

The gently-inclined north and west-facing hillside that encompasses the site generally consists of a homocline that forms a gently variable dip-slope condition that has been altered by landslides and grading activities that have occurred around the perimeter of the site. A broad, north-plunging syncline was mapped by others during previous grading activities to the west of the site (Leighton, 1993), within the current parking lot area. Bedding angles were observed to range between 8 and 11 degrees to the northwest overall, within the majority of the hillside site; with exception of a flattening of average dip at the crest of the ridgeline to the south of the site, and a steepening of the dip in the northern portion of the site adjacent to El Toro Road (Leighton, 1991).

Bedding ranges from very thin to moderately thick, interbedded siltstone, sandstone and few scattered very thin clay beds with variable levels of cementation. Scattered joints lined with gypsum were observed in the upper weathered zone of the hillside. Minor tectonic shearing along-bedding has been observed in the bedrock material, within beds of relatively weak bedding. The hillside around the central canyon is mantled with a thick layer of topsoil/colluvium that is the result of in-place weathering, slope creep and slopewash.

Two site landslides have been drilled and identified during downhole logging, and supporting data evaluated for interpretation of landslide limits. The west landslide as observed in bucket auger boring BA-1, was 28 feet deep at the boring, and extends under El Toro Road. The landslide does not extent up the hillside to the south within the site based on the information from boring BA-2 and the geomorphic expression of the slope. The east landslide as observed in boring BA-3 was part of a larger landslide that also extends below El Toro Road, and was partially beheaded

when the design cut slope for the FTC was excavated along the east boundary of the site. Although the slide is relatively thin at the location explored at 18.5 feet below ground, the bedding appears to flatten slightly to the southeast under the former ridgeline (since cut down), making the slide slightly thicker to the southeast. Several older borings and one trench by others within the limits of the east landslide have constrained its limits, as presented on the Geotechnical Map and Cross Sections (Sheets 1 & 2). During development of the existing commercial lots and self-storage buildings across El Toro Road (to the north) both landslides were provided with a buttress keyway and subdrain system.

2.4 <u>Groundwater</u>

During our subsurface evaluation, groundwater was not encountered to the maximum explored depth of approximately 62 feet below existing grade.

Seasonal fluctuations of groundwater elevations should be expected over time. In general, groundwater levels fluctuate with the seasons and local zones of perched groundwater may be present within the near-surface deposits due to local seepage or during rainy seasons. Local perched groundwater conditions or surface seepage may develop once site development is completed and landscape irrigation commences.

2.5 Faulting and Seismic Hazards

The subject site is not located within a State of California Earthquake Fault Zone (i.e., Alquist-Priolo Earthquake Fault Act Zone) and no active faults were identified on the site during our site evaluation (CGS, 2018). A fault is considered "Holocene-active" if evidence of surface rupture in Holocene time (the last approximately 11,000 years) is present. The possibility of damage due to ground rupture is considered low since no active faults are known to cross the site.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Southern California region, which may affect the site, include ground lurching, soil liquefaction, dynamic settlement and earthquake induced landslides. These secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault and the onsite geology. Faults that may produce significant shaking include but are not limited to the Whittier-Elsinore, the Newport-Inglewood, San Andreas and San Jacinto Fault Zones. A discussion of these secondary effects and proposed mitigation in accordance with the provisions of the Seismic Hazards Mapping Act is provided in the following sections.

2.5.1 Liquefaction and Dynamic Settlement

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similar to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions coexist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Studies indicate that saturated, loose, near surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction

potential. In general, cohesive soils are not considered susceptible to liquefaction (Bray & Sancio, 2006). Effects of liquefaction on level ground include settlement, sand boils, and bearing capacity failures below structures. Dynamic settlement of dry loose sands can occur as the sand particles tend to settle and densify as a result of a seismic event.

The site is not located in a State of California liquefaction hazard zone (CDMG, 2001). Based on the proposed plans and remedial grading, the site will consist of compacted fill over dense/hard native materials. The potential for post construction liquefaction and liquefaction-induced dynamic settlement is considered negligible.

2.5.2 <u>Lateral Spreading</u>

Lateral spreading is a type of liquefaction-induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures.

Due to the negligible potential for liquefaction, the potential for lateral spreading is also considered negligible.

2.5.3 <u>Earthquake Induced Landslide</u>

A small portion of the site is located within a State of California Seismic Hazard Zone (CDMG, 2001) for earthquake-induced landslide, at the northeast-most corner of the property. Construction of the Foothill Transportation Corridor (FTC) altered the topography in that location; the hazard zone depicted on the seismic hazard potential map was originally delineated on the pre-existing topography of the region and is no longer applicable. Once the site has been rough graded in general accordance with the recommendations presented here and in future applicable reports, potential for earthquake-induced landslide at the site is considered very low.

2.6 Seismic Design Criteria

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2016 CBC. Representative site coordinates of latitude 33.6616 degrees north and longitude -117.6375 degrees west were utilized in our analyses. Please note that these coordinates are considered representative of the site for preliminary planning purposes, however their applicability must be verified with respect to a desired specific location within the site. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and S_{M1}) and adjusted design spectral response acceleration parameters (S_{DS} and S_{D1}) for Site Class D are provided in Table 1 on the following page.

TABLE 1

Selected Parameters from 2016 CBC, Section 1613 - Earthquake Loads	Seismic Design Values
Site Class per Chapter 20 of ASCE 7	D
Risk-Targeted Spectral Acceleration for Short Periods (S _s)*	1.450g
Risk-Targeted Spectral Accelerations for 1-Second Periods (S ₁)*	0.539g
Site Coefficient F _a per Table 1613.3.3(1)	1.0
Site Coefficient F _v per Table 1613.3.3(2)	1.5
Site Modified Spectral Acceleration for Short Periods (S_{MS}) for Site Class D [Note: $S_{MS} = F_a S_S$]	1.450g
Site Modified Spectral Acceleration for 1- Second Periods (S_{M1}) for Site Class D [Note: $S_{M1} = F_v S_1$]	0.809g
Design Spectral Acceleration for Short Periods (S_{DS}) for Site Class D [Note: $S_{DS} = (^2/_3)S_{MS}$]	0.966g
Design Spectral Acceleration for 1-Second Periods (S_{D1}) for Site Class D [Note: $S_{D1} = (^2/_3)S_{M1}$]	0.539g
Mapped Risk Coefficient at 0.2 sec Spectral Response Period, C _{RS} (per ASCE 7)	1.028
Mapped Risk Coefficient at 1 sec Spectral Response Period, C _{R1} (per ASCE 7)	1.058
PGA _M (Section 11.8.3 of ASCE 7)	0.526g
· ·	

Seismic Design Parameters

* From SEAOC, 2019

A deaggregation of the PGA based on a 2,475-year average return period indicates that an earthquake magnitude of 6.7 at a distance of approximately 17.4 km from the site would contribute the most to this ground motion. A deaggregation of the PGA based on a 475-year average return period indicates that an earthquake magnitude of 6.7 at a distance of approximately 23.5 km from the site would contribute the most to this ground motion (USGS, 2008).

2.7 Soil Shear Strength Parameters

The soil shear strength parameters utilized in our slope stability analysis are based on laboratory testing of the onsite materials, previous site shear strength parameters and published shear strength data (CDMG, 2000). The soil shear strength for along clay bedding is based on the results of a fully-softened residual torsional ring shear test from clay materials obtained during downhole logging from our recent field evaluation. Where applicable, soil shear strength

parameters were increased (less than composite peak strength values) for seismic loading conditions. Laboratory test results are provided in Appendix C.

TABLE 2

Soil Type	<pre></pre>	Cohesion (psf)
Tps – Cross Bedding	30	300
Tps - Along Clay Beds	15	0
Compacted Fill	30	300
Landslide Material	26	300
Landslide Rupture Surface	12	100
Landslide Backscarp	18	150
Alluvium	27	100

Soil Shear Strength Parameters for Static Slope Stability Analysis

2.8 <u>Slope Stability Analyses</u>

Slope stability analyses were performed on cross-sections positioned throughout the site based on the proposed design profile. Slope stability analysis was performed using the computer program GSTABL7 with STEDwin version 2.005.3 (Gregory Geotechnical Software, 2013). Potential rotational and block surfaces were analyzed using Bishop's Modified Method and Janbu's Simplified Method, respectively. A minimum factor of safety of 1.5 is typically required for static loading conditions. Seismic slope stability analysis was performed in accordance with the City of Mission Viejo Grading Manual (2010). Where applicable, the Grading Manual requires a horizontal seismic coefficient (Kh) of 0.15 with a minimum resulting factor of safety of 1.1. Since the landslide rupture plane is less than 12 degrees from the horizontal, pseudostatic (seismic) slope stability was not performed for the onsite landslides in accordance with City of Mission Viejo Grading Manual.

Based on the proposed grading plan, slope stability analysis indicates a global factor of safety greater than 1.5 and 1.1 for static and pseudo-static (seismic) loading conditions, respectively. Slope stability analysis is provided in Appendix D.

Additional slope stability analysis may need to be performed once the 40-scale rough grading plans have been prepared and more specific details are available regarding finalized slopes and MSE wall configurations, etc. This additional analysis may include additional cross-sections for confirmation of localized stabilization recommendations.

2.9 <u>Temporary Stability</u>

Temporary stability of proposed backcut slopes during remedial grading will require additional analysis, monitoring and potential grading sequence recommendations to ensure protection of existing improvements along the southern portion of the site. Monitoring is recommended to include regular inclinometer readings and field mapping/observations of slopes by the geologist. Proposed inclinometer locations are depicted on the Geotechnical Map (Sheet 1). Grading sequence recommendations include the "sliding keyway" method of construction where a maximum keyway length (section) is determined and excavation is sequenced to maintain temporary stability. Appropriate maximum section sizes for keyways should be determined as part of a future grading plan review for site development.

2.10 <u>Rippability and Oversize Material</u>

Based on observations during our subsurface investigation and experience at nearby sites in similar materials, we anticipate the native soils will be rippable with conventional earth-moving equipment in good condition. However, it should be noted that locally cemented beds or concretion nodules may be encountered that do not break down and must be handled as "oversize" material during fill placement.

2.11 <u>Expansion Potential</u>

Based on the results of laboratory testing, site soils have a "High" expansion potential. Final expansion potential of site soils should be determined at the completion of grading. Results of expansion testing at finish grades will be utilized to confirm final foundation design.

2.12 <u>Soil Corrosivity</u>

Preliminary corrosion testing indicated soluble sulfate contents of approximately 0.042 and 0.03 percent, chloride contents of 380 and 780 parts per million (ppm), pH values of 7.4 and 6.8, and minimum resistivity values of 365 and 279 ohm-cm. Based on Caltrans Corrosion Guidelines, soils are considered corrosive to structural elements if the pH is 5.5 or less, or the chloride concentration is 500 ppm or greater, or the sulfate concentration is 2,000 ppm (0.2 percent) or greater (Caltrans, 2015).

Based on preliminary laboratory sulfate test results, the near surface soils are designated to a class "S0" per ACI 318, Table 19.3.1.1 with respect to sulfates. Concrete in direct contact with the onsite soils can be designed according to ACI 318, Table 19.3.2.1 using the "S0" sulfate classification.

2.13 Settlement Monitoring

Fill soils are subject to post-grading settlement. This even occurs to properly compacted fill soils with proper remedial grading. In general, total fill depths greater than approximately 40 feet require surface settlement monitoring be performed after grading is completed to ensure long-term fill settlement is within tolerable limits. Based on the current design, it appears that selected areas will exceed 40 feet in thickness of artificial fill and therefore should be monitored for settlement prior to releasing the area for construction of settlement sensitive improvements.

2.14 Infiltration Potential

Based on our site evaluation and subsurface investigation, the majority of site soils (i.e., bedrock,

fill and alluvium) are predominately fine-grained silts and clays that are known to have a very low hydraulic conductivity and therefore have very low infiltration rates. Based on one infiltration test, the on-site alluvium has a very low infiltration rate (Refer to Appendix B for infiltration data summary); however, that alluvium will be removed with remedial grading and the remaining soils are not feasible for infiltration as summarized below.

At the completion of grading, in general the proposed development will consist of compacted fill over bedrock. Engineered fill is considered unacceptable for infiltration in accordance with the Orange County Technical Guidance Document (County of Orange, 2017; "Section 4.2.2.4 Geotechnical Criteria"). By definition, on-site bedrock materials do not readily transmit water, and landslide materials tend to only transmit limited water via fracture permeability due to their density and fine-grained composition.

Purposeful infiltration of water to the subsurface at the subject site is neither possible nor acceptable from a geotechnical standpoint given the onsite materials and the hillside nature of the site.

3.0 <u>CONCLUSIONS</u>

Based on the results of our subsurface evaluation and geotechnical review of the proposed plan, it is our opinion that the proposed improvements are feasible from a geotechnical standpoint, provided that the recommendations provided here and in future reports (40 scale grading plan review, etc.) are incorporated during site grading and development. A summary of our geotechnical conclusions are as follows:

- The bedrock geologic unit mapped on the site is the Tertiary Puente Formation. Two landslides derived from site bedrock materials were identified in the central and northern portions of the site. Artificial fill was placed on the west-facing slope at the southwest portion of the site, during previous rough grading on the site.
- Anticipated earthwork at the site will consist of rough grading including design cuts and fills, excavation of buttress keyways for design slopes, remedial grading of potentially compressible soils and landslide materials, installation of subdrains for keyways and slope backcuts, and construction of Mechanically Stabilized Earth (MSE) Walls.
- Groundwater was not encountered the maximum explored depth of approximately 62 below existing grade.
- Construction sequencing of earthwork operations will be required during rough grading, in order to reduce the risk of temporary instability. Methods including construction of a "sliding keyway" should be analyzed to determine a maximum length of keyway (section size) that may be constructed.
- Monitoring of inclinometers at selected locations is recommended during future rough grading activities to ensure protection of existing improvements such as offsite slopes, the Edison tower and power poles, and communication utilities.
- Based on our review of the State of California Seismic Hazard Zones, a small portion of the site is located within a zone having a potential for earthquake induced landslide. This potential will be mitigated with design cut and fill grading and remedial grading measures presented herein.
- Based on our review of the State of California Seismic Hazard Zones, the site is not located within a zone having a potential for liquefaction. Based on the proposed plans and remedial grading, the site will consist of compacted fill over dense/hard native materials Therefore, the potential for post construction liquefaction and liquefaction-induced dynamic settlement is considered negligible.
- Active or potentially active faults are not known to exist on or in the immediate vicinity of the site. The subject site will likely experience strong seismic ground shaking during its design life.
- Based on the results of our evaluation, it is anticipated that the onsite materials may be excavated with conventional heavy-duty construction equipment in good working condition.
- From a geotechnical perspective, the existing onsite soils (including older fill, alluvium and landslide) are suitable material for use as general fill, provided that they are relatively free from rocks (larger than 8 inches in maximum dimension), construction debris, and significant organic material.
- Existing onsite soils contain clayey materials with high fines content and expansion potential that are <u>not</u> suitable for use in Mechanically Stabilized Earth (MSE) retaining wall backfill, or conventional retaining wall backfill. Therefore, import of sandy soils meeting project recommendations will be required for retaining wall backfill.
- Global slope stability analysis indicates that two large buttress keyways are necessary in order to provide a static factor of safety of 1.5. Design slopes are anticipated to be grossly stable as designed,

as long as they are constructed in accordance with these recommendations and future applicable geotechnical recommendations, California Building Code, and City of Mission Viejo requirements, and are properly landscaped and maintained. Design cut slopes should be provided with buttress/stability fills to reduce the potential for block and surficial failures and to facilitate planting.

- Fill slopes are anticipated to be both grossly and surficially stable, as long as they are constructed in accordance with these recommendations and future, applicable, geotechnical recommendations, and they are properly landscaped and maintained.
- Existing native slopes surrounding the development are anticipated to perform as they have in the past, therefore minor surficial failures may occur.
- Based on preliminary laboratory test results, the onsite soils are anticipated to generally have "High" expansion potential. Final design expansion potential must be determined at the completion of grading. Mitigation measures are required for planned foundations and site improvements such as concrete flatwork to minimize the impacts of expansive soils. In addition, improvements located adjacent to tops of slopes will be impacted by slope creep.
- Based on laboratory test results (chlorides), site soils are considered "corrosive" according to Caltrans guidelines (Caltrans, 2015).
- Based on preliminary sulfate test results, the near-surface soils are designated as class "S0" with respect to sulfates.
- The main seismic hazard that may affect the site is from ground shaking from one of the active regional faults. The subject site will likely experience strong seismic ground shaking during its design life.
- Based on the results of our evaluation and analysis provided herein, and provided our recommendations and future geotechnical recommendations are properly implemented during construction, the proposed development of the site is not anticipated to significantly impact adjacent perimeter properties.
- Design fill slopes are anticipated to be both grossly and surficially stable, as long as they are constructed in accordance with our geotechnical recommendations and are properly landscaped and maintained throughout their design life.
- Existing native slopes surrounding the development are anticipated to be grossly stable; however, minor surficial failures may occur.
- From a geotechnical perspective, the existing onsite soils including existing fill are considered suitable material for use as general fill (with the exception of MSE wall backfill and conventional retaining wall backfill), provided that they are relatively free from rocks (larger than 8 inches in maximum dimension) and significant organic material. Moisture conditioning will be required to obtain the required compaction. Import of soils suitable for backfill of MSE and conventional retaining walls will also likely be required.
- Site soils (i.e., bedrock, fill and alluvium) are predominately fine-grained silts and clays which have very low permeability and therefore have very low infiltration rates. At the completion of grading, the proposed development will consist of compacted fill over bedrock and therefore purposeful infiltration of water is not possible nor recommended from a geotechnical standpoint.

4.0 PRELIMINARY RECOMMENDATIONS

A grading plan review report based on the 40-scale rough grading plans should be prepared in order to provide updated geotechnical recommendations (as necessary) for the proposed development. Additional field work and laboratory testing may be required. Additional and/or modified geotechnical recommendations may also be required.

Based on our preliminary study, the following is a summary of our preliminary geotechnical recommendations.

- Remedial grading is recommended to include removal and recompactions of unsuitable soils including landslide materials, alluvium/colluvium, and highly weathered native soils, from areas within influence of the proposed development.
- Based on our analysis, buttress keyways are required to provide adequate global factor of safety. Locations of recommended buttress keyways are shown on the Geotechnical Map, Sheet 1. Construction sequencing of earthwork operations will be required during rough grading, in order to reduce the risk of temporary instability. Methods including construction of a "sliding keyway" should be analyzed to determine the length of keyway sections that may be constructed, particularly along the rear perimeter slope.
- Temporary backcuts during grading should be constructed at a maximum slope ratio of 1.5:1 (horizontal: vertical). Temporary keyway sidecuts may be excavated at a ratio of 1:1.
- Temporary backcuts should be mapped by a geologist and monitored for stability during excavation of keyways, using frequent visual observation and monitoring of slope inclinometers.
- Design cut lots, or lots with less than 5 feet of design fill that are not undercut by remedial grading, should be overexcavated a minimum of 5 feet below respective pad grades.
- MSE walls and conventional retaining walls should be backfilled with relatively sandy soils. Onsite soils are too fine-grained and therefore are not suitable for MSE and conventional retaining wall backfill. Therefore, we anticipate that import of sandy soils meeting project recommendations will be required. Sandy soils should comprise the geogrid zone required for local stability as determined by the MSE wall designer. For conventional retaining walls, the sandy import zone should be a minimum of one-half the height of the retaining wall.
- Allowance in the earthwork volumes budget should be made for an estimated 5 to 10 percent reduction in volume of existing soils. It should be stressed that these values are only estimates and that an actual shrinkage factor would be extremely difficult to predetermine. Subsidence due to earthwork activities is expected to be on the order of 0.1 feet. This value is an estimate only and excludes losses due to removal of vegetation or debris. The effective shrinkage of onsite soils will depend primarily on the type of compaction equipment and method of compaction used onsite by the contractor, and the accuracy of the topographic survey.
- Due to onsite expansive soils, mitigation measures such as stiffened and/or post-tensioned slab foundations are recommended. Pre-soaking of the subgrade soils will be required to reduce the potential impact of expansive soils. Recommendations for foundation design should be provided at the 40-scale plan review design level.
- At completion of grading, additional testing will be required to confirm the characteristics of the fill materials including expansion potential and corrosivity characteristics. While LGC Geotechnical

does not provide recommendations for corrosion, based on our experience typical mitigation measures include increased compressive strength for structural concrete, decreased water-tocement ratio for structural concrete and/or encapsulation of post-tensioned cables. A corrosion consultant should provide recommendations for mitigation of corrosivity based on laboratory testing results of near-surface soils at completion of grading.

- Due to site soils being predominately compacted fill and bedrock consisting of fine-grained soil interbeds (silts and clays), and the hillside nature of the site, the intentional infiltration of storm water is not recommended.
- After completion of site rough grading, graded slopes, existing perimeter landscaped slopes, subdrain outlets, etc., will require regular maintenance in accordance with this and future geotechnical grading plan review reports.

5.0 <u>LIMITATIONS</u>

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

This report is based on data obtained from limited observations of the site, which have been extrapolated to characterize the site. While the scope of services performed is considered suitable to adequately characterize the site geotechnical conditions relative to the proposed development, no practical evaluation can completely eliminate uncertainty regarding the anticipated geotechnical conditions in connection with a subject site. Variations may exist and conditions not observed or described in this report may be encountered during grading and construction.

The findings of this report are valid as of the present date. However, changes in the conditions of a site can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. The findings and conclusions presented in this report can be relied upon only if LGC Geotechnical has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. This report is intended exclusively for use by the client, any use of or reliance on this report by a third party shall be at such party's sole risk.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification.

Appendix A References

APPENDIX A

<u>References</u>

- American Concrete Institute, 2014, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
- American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, 2013.
- Anthony-Taylor Consultants, 1999, Amended Update Geotechnical and Finish Grade Report, Mission Foothills Professional Building, 28032 El Toro Road, Mission Viejo, California, Project No. 99-1231, dated October 25, 1999
- California Building Standards Commission, 2016, California Building Code, California Code of Regulations Title 24, Volumes 1 and 2, dated July 2016.
- California Department of Transportation (Caltrans), 2015, Corrosion Guidelines, Version 2.1, dated January 2015.
- California Division of Mines and Geology [CDMG], 2000, Seismic Hazard Evaluation of the El Toro 7.5-Minute Quadrangle, Orange County, California, Seismic Hazard Zone Report 2000-013, dated 2000.
- _____, 2001, State of California Seismic Hazard Zones, El Toro Quadrangle, Official Map, scale: 1:24,000, Release Date: January 17, 2001.
- California Geological Survey (CGS),2008, California Geological Survey Special Publication 117A: Guidelines for Evaluating and Mitigating Seismic Hazards in California.
- _____, 2018, Special Publication 42: Earthquake Fault Zones, Revised 2018
- Continental Aerial Photo, Inc., 2019, Aerial Photos:3/2/1999 C135-39-154&155; 9/11/1997 C116-39-23&24; 1/28/1995 – C102-39-99&100; 2/2/1993 – C86-9-34&35; 1/20/1992 – C85-11-6&7; 1/15/1988 – C-2-055; 1/9/1987 – F-253; 4/8/1983 – 218-12-18&19; 1/31/1981 – 211-12-16&17; 2/25/1980 – 80033-158&159; 12/13/1978 – 203-12-24&25; 1/24/1977 – 181-12-16&17; 1/13/1975 – 157-12-16&17; 10/30/1973 – 132-11-9&10; 1/31/1970 – 61-7-166&167; 3/30/1967 – 2-133&134; 9/20/1965 – 1FF-105&106; 8/15/1959 – 261-8-28-68&69; 12/12/1952 – 3K-111&112
- City of Mission Viejo, 2010, Grading and Excavation and Code, Title 8, Chapter 8.10 of the Codified Ordinances.
- County of Orange, 2017, Technical Guidance Document for the Preparation of Conceptual/Preliminary and/or Project Water Quality Management Plans (WQMPs) in South Orange County, dated September 28, 2017.

Gregory Geotechnical Software, 2013, GSTABL7, Version 2.005.3, March.

- Hunsaker & Associates, 2019, Conceptual Grading Plan, Tentative Parcel Map PM2019-137, plot received June 24, 2019
- Morton, D.M., 2004, Preliminary Digital Geologic Map of the Santa Ana 30' X 60' Quadrangle, Southern California, U.S.G.S. Open-File Report 99-172, Version 2.0, Scale: 1:100,000, dated 2004
- Leighton and Associates, Inc. (Leighton), 1991, Preliminary Geotechnical Investigation and Grading Plan Review for Lots 2, 3, and 6 of the Substantial Conformance Exhibit for Tentative Tract 14496, Planning Area 11, Mission Viejo, California, Project No. 1901591-03, dated September 13, 1991
- _____, 1992, Geotechnical Review of Revision No. 2 to the Grading Plan, Lots 2 and 3 of Tentative Tract 14602 and Lot 4 of Tentative Tract 14496, Planning Area 40, Mission Viejo, California, Project No. 190159-07, dated November 13, 1992. [Incomplete Reference]
- ______, 1993, Final Geotechnical Report of Rough Grading for Lot 4 of Tentative Tract 14496 and Lots 2 and 3, Tentative Tract 14602, Planning Area 40, City of Mission Viejo, California, Project No. 1901591-07, dated October 8, 1993
- MTG_L, 2001, Final Report of Observation and Testing, Mission Foothill Professional Building, Marguerite Parkway & El Toro Road, Mission Viejo, California, Project No. 1533-A02, dated April 10, 2001.
- Structural Engineers Association of California (SEAOC), 2019, Seismic Design Maps, Retrieved July 2, 2019, from: https://seismicmaps.org/
- United States Geological Survey (USGS), 2008, Unified Hazard Tool, Dynamic: Conterminous U.S. 2008 (v3.3.1), Retrieved July 2, 2019, from: <u>https://earthquake.usgs.gov/hazards/interactive/</u>

Appendix B Logs of Exploratory Borings

				(Ge	ot	ech	nnio	cal I	Boring Log BA-1	
Date			3/26/2019				Page	1 of	2	Drilling Company : Alroy Drilling	
Proje	ct Nan	ne :	El Toro 5							Type of Rig : Earthdrill Bucket Auger	
Proje	ct Nun	nber	: 18184-01							Drop : 12" Hole Diameter : 26"	
			of Hole : ~							Drive Weight: 0' to 24' - 2400lbs, 25' to 44'- 1550lbs,	
Hole	Locati	on :	See Geote	chnic	cal I	Map	<u>כ</u>			45' to 62' - 850lbs	
										Logged by ARN/KTM	
				Sample Number			Dry Density(pcf)	-	ō	Sampled by ARN/KTM	
Elevation (ft)		Graphic Log	<i>(</i>)	Nur		nut	sity((%)	USCS Symbol		of Test
atior	۲) (ft	hi	ides	ple		ပိ)en:	iure	່ ທີ່		Jo
eva	Depth (ft)	rap	Attitudes	am		Blow Count	2	Moisture	SC		Type
Ξ		G	A	S		B	Ω	Σ	Ő	DESCRIPTION	É.
	0	A								0' to 28' - <u>Quaternary Landslide Deposits (Qls)</u>: Variable, disturbed; internal shears and jumbled bedding.	EI CR
	4									@0' - Sandy CLAY and SILT: dark brown, moist, stiff; topsoil rootlets.	MD
		AF-		B-1	╢		105.5	8.5	CL		
815—		Z			╢						
	5-				Ш					@5' - Base of surficial debris flow defined by internal shearing above	
		NT)			-					contact with lanslide block. Clayey to Silty SANDSTONE and SILTSTONE: light gray to light yellowish brown, slightly moist to	
		12h								moist; offset beds in a clayey, sheared matrix.	
810-		1/A			_						
010	10-	(An)		R-1		5	87.3	30.9	ML	@10' - Silty SANDSTONE and Sandy SILTSTONE interbeds: light	
	=	17-7		IX-1		5 6	07.5	30.9		gray to light brown, slightly moist, very stiff; rootlets to 10'.	
	di la contra de la c	47	1		-						
	and Management	标	GB: N40E, 30SE		-					@13' - General bedding attitude on buff SANDSTONE interbed; ~4	
805-	The second second	F.			-					inches thick; cemented; fractured and slightly offset. @14' - Grades to well-bedded silty CLAY and Sandy SILTSTONE:	
	15-		B:N60W, 23SW		-					moist, very stiff; highly fractured; gypsum stringers.	
	-	/			-					@15' - Bedding attitude on Silty SAND interbed.	
	Ĩ	÷			-						
800-	1.00	·VA									
800-	20-	TY-				~	00.4	05 F		2001 Oceanal hadding allinda an Oliceh thistochasis Ash Dadi	
		长	GB: N75E, 25SE	R-2		3 4	86.1	25.5	ML	@20' - General bedding attitude on 2-inch thick volcanic Ash Bed; very fine SAND: light orange to off white, dry, stiff; slightly offset.	
	-	XY.X	-		-						
	-	1.			-						
795—	-	1	•		-						
	25 -	J/	and the second s		-						
	-				-						
	-	~A			-					@28' - Attitude on rupture surface: \sim_{8}^{1} -inch thick; greenish gray; basal striations; variable ~2-inch zone.	
	-		RS: N25E, 8NW Striations N50W	GB-1	Π					28' to T.D Tertiary Puente Formation (Tp): @28' - Interbedded	
790-		1								SILTSTONE and SANDSTONE: light brown to light gray, slightly moist, hard; consistent bedding; iron oxide stained beds; some	AL
	_	1								jarosite and gypsum filled joints.	
					L	OCAT	ION OF	THIS BC		D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR ITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY	
					D	DIFFE	R AT OTH	HER LOO	CATIONS		ETER
					0 S	OF TIN SIMPL	IE. THE	DATA P	RESENTE	D IS A CN CONSOLIDATION L CONDITIONS CR CORROSION	
	G	eot	echnical,	Inc	• E	NCO	UNTEREI	D.		AL ATTERBERG LIMITS CO COLLAPSE/SWELL RV R-VALUE	
					1						

				G	ieot	tech	nni	cal E	Boring L	_og	BA-1		
Date	:		3/26/2019			Page	e 2 of	2	Drilling Cor	mpan	y: Alroy Drilling		
Proje	ct Nan	ne :	El Toro 5						Type of Rig	J:	Earthdrill Buck	et Auger	
Proje	ct Nur	nber	: 18184-01						Drop :	12"	Hole D	iameter: 26"	
Eleva	tion o	f Top	of Hole : \sim	898 '	MSL				Drive Weig	ht :	0' to 24' - 2400lbs, 25' to	44'- 1550lbs,	
Hole	Locati	on :	See Geote	chnic	al Ma	р					45' to 62' - 850lbs		
										Lc	ogged by ARN/KTM		
				5		(Sa	mpled by ARN/KTM		
				Sample Number		Dry Density(pcf)							
ה (ft		Log		Jn N	nut	sity(%)	Symbol					of Test
tior	(ft	ie I	des	e	CO	ens	nre	Ś					of -
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	and a	Blow Count	Ч D	Moisture (%)	nscs					Type
Ē	ă	Ō									DESCRIPTION		Γ
	30	the	B: N18E, 7NW	R-3	4 25	100	23.3	ML	@30' - Attitude moist, hard.	on Sa	ndy SILTSTONE: light to	medium gray, slightly	
	_	×.	D. NO0144 70144						@31' - Cement		NDSTONE; gypsum and	iron oxide along	
	_	14.	B: N20W 7SW	L					bedding; ~4 inc @32' - Attitude		ick. ntact of SANDSTONE and	d unoxidized	
785-	_			L					SILTSTONE.	011 001			
100	35-		. 1910	Ļ									
	-			Ļ									
	_	A	CB: N-S, 7W	Ļ							azor thin CLAY Bed: blac		
	_	1		Ļ					base with gypsi below.	um and	d iron oxide staining; fresl	n unoxidized siltstone	
780-	-			Ļ									
	40-			R-4	20	98.3	20.1	CL-ML	@40' - Sandy S	NI TST	ONE: medium to dark gra	av dry hard abundant	DS
	-	1			10/2"	00.0	20.1				ous; shallow dipping beds		
	-	· · · /		F							STONE: three blue-black	interbedded CLAY	
	-	XXX		F					@44' Refusal o		End of visual log.		
775—	-	X××							-				
	45—			F					Total Depth No Ground V		Encountered		
	-			F							ttings on 3/26/2019		
	-			F									
	-			F									
770-	-			F									
	50-			F									
	-			F									
	-			Ē									
705	_			ſ									
765—	-			Γ									
	55—			[
	_												
	_			L									
760-	_			L									
	_			Ļ									
			GC echnical,		LOCA DRILL DIFFE CHAN OF TIM SIMPL	TION OF ING. SU R AT OT GE AT TI ME. THE	THIS BO BSURFA HER LO HIS LOC DATA F DN OF T	ACE COND CATIONS / ATION WI PRESENTE	D AT THE TIME OF DITIONS MAY AND MAY TH THE PASSAGE	SAM B R G	IPLE TYPES: BULK SAMPLE RING SAMPLE GRAB SAMPLE	TEST TYPES: DS DIRECT SHEAR MD MAXIMUM DENSITY SA SIEVE ANALYSIS S&H SIEVE ANALYSIS S&H SIEVE AND HYDROM EI EXPANSION INDEX CN CONSOLIDATION CR CORROSION AL ATTERBERG LIMITS CO COLLAPSE/SWELL RV R-VALUE	ETER

				C	Geo	tecl	nni	cal I	Boring Log BA-2	
Date			3/27/2019			Page	e 1 of	3	Drilling Company : Alroy Drilling	
Proje	ct Nan	ne :	El Toro 5						Type of Rig : Earthdrill Bucket Auger	
Proje	ct Nun	nber	: 18184-01						Drop : 12" Hole Diameter : 26"	
Eleva	tion of	f Top	of Hole:~	966 '	MSL				Drive Weight: 0' to 24' - 2400lbs, 25' to 44'- 1550lbs,	
Hole	Locati	on :	See Geote	chnic	al Ma	р			45' to 62' - 850lbs	
									Logged by ARN/KTM	
				ъ		(J			Sampled by ARN/KTM	
æ		_		Sample Number		Dry Density(pcf)		lod		ŭ
n (f	£	Ľ	S	N	nt	sity	%) (%	ym		of Test
atio	h (f	hic	apr	ple	ပြိ	Den	ture	SS		ot
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	am	Blow Count		Moisture (%)	USCS Symbol		Type
ш		G	∢	S	<u> </u>		Σ	n		<u> </u>
	0	N.F.							0' to T.D <u>Tertiary Puente Formation (Tp):</u> @0' - Colluvium, Sandy CLAY and SILT: dark brown, moist, stiff;	
865-	-	The							clasts of topsoil; abundant rootlets.	
	0 8	XX.		-						
	-	<u>S</u>	U	ļ						
	5-	Tr.		-					@5' - SILTSTONE and SANDSTONE: light brown to light gray,	
	100	:X:		-					slightly moist, hard; consistent bedding; iron oxide and jarosite	
860-	1	迅		ŀ					stained beds; gypsum filled clay seams and joints.	
	5 	i ji ji	Diess	-					@7' - Increased hardness.	
		-7-	GB: N20W, 5W	ŀ					@9' - General bedding attitude, slightly offset violet Ash Bed, 2 inches thick.	
	10-			R-1	3	86	22.7	ML	@10' - Sandy SILTSTONE to Sandy SILTSTONE: light yellowish	
	ci.		B: N37W, 10SW	1	3 7				brown, slightly moist, dense; moderately cemented; fine sand. @11' - Attitude on SANDSTONE Bed.	
855-	-	10000 8	C B: N60W, 12SW	ŀ					@12' - CLAY Bed attitude; very thin clay truncates fractures;	
	-	ž		-					increased competence below.	
		-\$.		-						
	15-=	ĽŹ.		-						
		1	03	-						
850-	2		GB: N25W, 12SW	ŀ						
	=			-					@17.5' - General bedding attitude on SANDSTONE; jarosite and iron oxide staining. Decreased soft-sediment deformation below.	
	-	X		ŀ					oxide staining. Decreased solt-sediment deformation below.	
	20-	· \$.		R-2	10/8"	82	37.1	ML	@20' - SILTSTONE and SANDSTONE interbeds: light gray and light	
	Participant Participant	XXXX	GB: N38W, 12SW		10/8				brown, slightly moist, very dense; subhorizontal bedding; fissile. @21' - General bedding attitude on concretion; ~6 inches thick.	
845—			CB: N24W, 10SW	GB-1	Π					
	- me	+i	O D. 1124W, 100W	00-1	Щ				@22.5' - Attitude on CLAY Bed; bluish gray; lacks internal shear; ~1/4-inch thick.	
		:沃		ŀ						
	25-	÷Ę.		F						
	and the second			F						
840-	-	· <u>A</u> .		F						
	-	XXX	B : N36W, 11SW	-					@28' - Bedding attitude, SILT lens with gypsum.	
				ŀ					@30' - Bedding attitude on Ash Bed; Sandy SILT: off white, dry, stiff;	
	30-	V	₿ : N50E, 10NW						continuous and undisrupted around boring; ~2 inches thick.	
			ſ					IES ONLY DRING AN	AT THE SAMPLE TYPES: TEST TYPES: D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR	_
					DRILI	ING. SU	BSURFA	ACE CONE	ITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS	ED
			61		CHAN	NGE AT T	HIS LOC		TH THE PASSAGE EI EXPANSION INDEX	≞ĸ
		act	echnical,	Inc	SIMP		ON OF T		AL CONDITIONS CR CORROSION AL ATTERBERG LIMITS	
			connoal,						CO COLLAPSE/SWELL RV R-VALUE	

				G	ieot	ech	nni	cal E	Boring Log BA-2	
Date :			3/27/2019			Page	e 2 of	3	Drilling Company : Alroy Drilling	
Proje			El Toro 5						Type of Rig : Earthdrill Bucket Auger	
			: 18184-01						Drop : 12" Hole Diameter : 26"	
Eleva Hole I			of Hole : ~ See Geote			<u> </u>			Drive Weight: 0' to 24' - 2400lbs, 25' to 44'- 1550lbs, 45' to 62' - 850lbs	
	LUCati		366 96016			5			Logged by ARN/KTM	
				_ ا		_			Sampled by ARN/KTM	
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	Sample Number	Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
	30			R-3	19/12"	91.9	27.2	CL-ML	@30' - Sandy SILT: light gray and light brown, moist, very stiff;	DS
835— 830—	35			-					 well-bedded; few joints. @33' - Partially concreted silty SANDSTONE over 3-inch sand bed. @34' - SILTSTONE concretion; off-white. @35' - SILTSTONE with abundant foraminifera; scattered sand lenses. 	
825—	40			- R-4 - -	30/10'	97.5	26.2	CL-ML	@40' - Clayey SILTSTONE: brown and dark gray, moist, hard; unoxidized. Concretion 4 inches thick; continuous. @43' - SILTSTONE: dark gray; gypsum.	DS
820—	50		CB: N12W, 5SW	- - R-5	50/8"	99.9	21.3	ML	 @47' - Attitude on CLAY Bed: dark green, moist; very thin; fresh bedrock below. @49' - SILTSTONE concretion; ~4 inches thick, continuous. @50' - SILTSTONE: dark gray, moist, very hard. 	
815—	55 - F		CB: N29W, 5-9 SW	-					@53' - CLAY Bed: dark gray; ~ ¹ / ₁₆ -inch thick. @53.5' - SAND Bed: light purplish brown; fine-grained; ~6 inches thick; Possible Ash Bed. @54' - Attitude on CLAY Bed: dark gray; ~ ¹ / ₂ -inch thick; faint s-shears	
810-	te des tes en es en		B: N42W, 9SW CB: N41W, 8SW	- - - - -					within bed. Below is massive clayey siltstone. @60' - Attitude on SILTSTONE: blue gray, moist, soft to slightly stiff; Attitude on $\sim \frac{1}{2}$ -inch thick clay bed just below. Approximately 8-inch zone of interbedded sandstone, siltstone and clay beds, abundant soft sediment deformation. Possible flexural slip shearing. End of visual log.	AL TS
	G	eote	GC echnical,	Inc.	LOCA DRILLI DIFFE CHAN OF TIM SIMPL	TION OF ING. SUI R AT OTI GE AT TI ME. THE	THIS BO BSURFA HER LO HIS LOC DATA F DN OF T	ACE COND CATIONS / CATION WI PRESENTE	AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR TIONS MAY R RING SAMPLE MD MAXIMUM DENSITY ND MAY G GRAB SAMPLE SA SIEVE ANALYSIS ND MAY G GRAB SAMPLE SA SIEVE ANALYSIS TH THE PASSAGE EI EXPANSION INDEX	ETER

				G	ieo	tech	nnie	cal E	Boring L	_og	JBA-2			
Date			3/27/2019			Page	3 of	3	Drilling Cor	mpan	ny: Alroy Drilling			
Proje	ct Nan	ne :	El Toro 5						Type of Rig	j :	Earthdrill Buck	et Auge	er	
Proje	ct Nun	nber	: 18184-01						Drop :	12"	Hole D	iamete	e r: 26"	
			of Hole : ~						Drive Weigh	ht :	0' to 24' - 2400lbs, 25' to 45' to 62' - 850lbs	44'- 155	Olbs,	
Hole	Locati	on :	See Geote		ai Ma	p I								
											ogged by ARN/KTM			
				Der		cf)		_		Sa	ampled by ARN/KTM			
ft)		Ð		Sample Number	<u>+</u>	y(p	(%	oqu						st
) no	(ft)	С С С	S	Z 0	our	nsit	,) е	Syr						f⊥€
/ati	oth (phi	tud	du		De	stui	SS						e e
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	Sar	Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol			DESCRIPTION			Type of Test
	60			R-6 GB-3	50/8" I	108.2	14.6	ML	@61' - SILTSTO foraminifera; ma	ONE: o assive	dark gray, moist, very har ; fresh; unoxidized.	d; abund	ant	
805-	-	s fild and d							Total Depth =					
	_								No Ground V	Vater I				
	65-								Dackilled wi		ttings on 3/27/2019			
	- 05													
800-	_													
	-													
	-													
	70-													
	-													
795—	-													
	-			-										
	-													
	75-													
790-														
790-														
	-													
	80-													
	-													
785—	-													
	-													
	-													
	85—													
	-													
780-	-													
	-													
	_													
			GC echnical,		LOCA DRILL DIFFE CHAN OF TH SIMPI	TION OF ING. SUI R AT OTI GE AT TH ME. THE	THIS BO BSURFA HER LOO HIS LOC DATA P IN OF TI	ACE COND CATIONS A ATION WI RESENTE	D AT THE TIME OF DITIONS MAY AND MAY TH THE PASSAGE	SAM B R G	MPLE TYPES: BULK SAMPLE RING SAMPLE GRAB SAMPLE	TEST TYPI DS MD SA S&H EI CN CR AL CO RV	ES: DIRECT SHEAR MAXIMUM DENSITY SIEVE ANALYSIS SIEVE AND HYDROMI EXPANSION INDEX CONSOLIDATION CORROSION ATTERBERG LIMITS COLLAPSE/SWELL R-VALUE	ETER

				(30	eot	tech	nni	cal I	Boring Log BA-3	
Date :			3/28/2019				Page	e 1 of	3	Drilling Company : Alroy Drilling	
Proje	ct Nan	ne :	El Toro 5							Type of Rig : Earthdrill Bucket Auger	
Proje	ct Nun	nber	: 18184-01							Drop : 12" Hole Diameter : 26"	
Eleva	tion of	f Top	o of Hole : \sim	952	' IV	1SL				Drive Weight: 0' to 24' - 2400lbs, 25' to 44'- 1550lbs,	
Hole	Locati	on :	See Geote	chnie	cal	Ма	р			45' to 62' - 850lbs	
										Logged by ARN/KTM	
				Ē			(J			Sampled by ARN	
Ð		D		đ			(bc		lod		st
n (f	t)	Γοί	S	N		nnt	sity	6)	, m		of Test
atio	h (f	hic	apr	ple		ő	Den	ture	S S		e of
Elevation (ft)	Jepth (ft)	Graphic Log	Attitudes	Sample Number		Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol	DECODIDITION	Type
ш		U	٩	0		В		2		DESCRIPTION	H
850-	0	AT AN			- - -					 0' to 18.5' - Quaternary Landslide Deposits (QIs): Clayey to Silty SANDSTONE and SILTSTONE: light gray to light brown, slightly moist to moist, hard. Contains signs of internal shear and blocky, rotated beds with some voids. @0' - Sandy SILT: blackish brown, moist, medium stiff; thin scattered rootlets. @3.5' - Transition to light brown material; sandier than above; some gray and yellow mottle. 	EI
		1		B-1			97	23.5	SC		EI CR MD
845-	10-	11:54	GB: N70E, 20SE		-					@8' - General bedding attitude on Ash Bed; Silty SAND: white, dry, medium dense; ~2 inches thick.	
040	10 - 		B: N85W, 27NE	R-1	-	4 5	92.5	20.3	CL-ML	@10' - Attitude on Sandy SILTSTONE: white, slightly moist to dry, hard; iron oxide staining; slightly friable.	DS
840—	15 -		B: N56E, 47NW		-					@15' - Attitude on SILTSTONE; thin laminated beds interupted with abundant fractures and voids.	
835—	20-	HAT THAT	RS: N11W, 12SW CB: N25W, 18SW	R-2	-	6 5/3"	106.9	17.7	SM	 @18.5' - Rupture surface attitude; very thin clay overlying concretion. 18.5' to T.D <u>Tertiary Puente Formation - (Tp)</u> @18.5' - Interbedded SILTSTONE and SANDSTONE: light brown to light gray, slightly moist, hard; consistent bedding; iron oxide and jarosite stained beds. @18.5' - Concretion Bed; ~6 inches thick. 	
830—	- - 25 -	ANTI-TAN			-					 @20' - Silty SANDSTONE and Sandy SILTSTONE: tan to light brown, dense, dry; iron oxide staining; gypsum filled joints. @20.5' - Concretion layer. @21' - Attitude on CLAY Bed; greenish gray; gypsum lined; ~1/4-inch thick. 	
	ء ۽ ا	TT TT			-					@29' - Heavy bioturbation.	
	G	eot	GC echnical,	Inc	-	LOCA DRILL DIFFE CHAN OF TIM SIMPL	TION OF ING. SUI R AT OTI GE AT TI ME. THE	THIS BO BSURFA HER LO HIS LOC DATA F DN OF T	ACE CONE CATIONS CATION WI PRESENTE	D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR ITTIONS MAY R RING SAMPLE MD MAXIMUM DENSITY AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS AND MAY S&H SIEVE AND HYDROME TH THE PASSAGE EI EXPANSION INDEX	ETER

				(G	eot	tech	nni	cal E	Boring L	_og	J BA-3			
Date			3/28/2019				Page	e 2 of	3	Drilling Cor	mpar	ny: Alroy Dril	ling		
	ct Nan		El Toro 5							Type of Rig			Bucket Aug		
-			: 18184-01							Drop :	12"	н	ole Diamet	er: 26"	
			of Hole : ~		_					Drive Weigl	ht :	0' to 24' - 2400lbs		50lbs,	
Hole	Locati	on :	See Geote	chni	ca	l Ma	0					45' to 62' - 850lbs			
											Lo	ogged by ARN/	KTM		
				er			cf)					Sampled by Al	RN		
ft)		g		Sample Number		t	y(po	(%)	lodr						st
) uc	ft)	LC C	S	Ž		oun	nsit	e (Syn						f Te
/atio	oth (phic	Attitudes	nple		S ≥	De	stur	SS						o e
Elevation (ft)	Jepth (ft)	Graphic Log	Atti	Sar		Blow Count	Dry Density(pcf)	Moisture	USCS Symbol			DESCRIP	ΓΙΟΝ		Type of Test
_	30		ŧ	R-3				17	ML	@30' - Silty SA	NDST	ONE to Sandy SIL		lium to dark	
	-	-AT				13/3"				gray, slightly mo		ense/hard. Gradua			
		WW.	GB: N15W, 16SW		$\left \right $					depth. @32.5' - Cener	al Rod	dding on Volcanic A	sh Bod: fine S		
	-	-++			F					dense; ~2-3 inc	ches th	nick.	ton Dea, inte e	JAND. UIY,	
005	0.5	#													
825-	35-	7:17			[
	-	¥.													
					$\left\lfloor \right\rfloor$					@20' CANDO		light grove alightly	maint danaa		
	-				$\left \cdot \right $					manganeese no	odules	: light gray, slightly s; iron oxide and gy			
820-	40-	A	CB: N25W, 13SW	R-4		10/1"	115.4	15	ML	unoxidized silts @40 - Sandy S		ONE: light gray gra	ading to dark o	urav slightly	
	-	$\overline{\mathcal{N}}$		R-4 GB-1						-		on CLAY Bed, $\sim \frac{1}{16}$ -i			
	-	- A .			-					sandstone.					
	-	- <u>+</u>			$\left \cdot \right $										
	-	H.			$\left \right $										
815-	45-	44			$\left \cdot \right $							ue-ish gray; ~2 inc	h thick zone w	ith polished	
	3				$\left \right $					clay at base, $\frac{1}{16}$ -	-inch th	hick.			
	(received)														
		-4-4	CB: N15W, 15SW									ay Bed, ~1/8-inch t Clay Bed, 6 inche		gray, some	
810-	50			R-5		50/4"	103.5	14.6	CL-ML			TONE: dark gray, s		ion (bord)	DS
				R-0		50/4	103.5	14.0				a; massive to poorl			03
	-	5			$\left \cdot \right $										
	-				$\left \cdot \right $					@52.5' - CLAY @54' - Clayey p		gypsum lined; ~1/8 1	inch thick.		
	-				$\left \cdot \right $,. ND Bed; 3 inches t	hick.		
805-	55 —				$\left \cdot \right $										
	1														
	_	$\frac{1}{1}$								@59' - End visu	ual log.	l.			
	P		2			THIS S	SUMMAR	Y APPL	IES ONLY	AT THE	SAN	MPLE TYPES:	TEST TY		
						LOCA [:] DRILL	tion of Ing. Sui	THIS BO BSURFA	ORING ANI	D AT THE TIME OF	B R G	BULK SAMPLE RING SAMPLE GRAB SAMPLE	DS MD SA	DIRECT SHEAR MAXIMUM DENSITY SIEVE ANALYSIS	
						CHAN	GE AT TI	HIS LOC		TH THE PASSAGE			S&H El	SIEVE AND HYDROM	ETER
						SIMPL		ON OF T	PRESENTE	LD IS A AL CONDITIONS			CN CR AL	CONSOLIDATION CORROSION ATTERBERG LIMITS	
	G	eoti	echnical,	INC		21100	UNILINE	<i>.</i> .					CO RV	COLLAPSE/SWELL R-VALUE	

				Ģ	ieo	tech	nnie	cal I	Boring l	Log	g BA-3		
Date			3/28/2019			Page	3 of	3	Drilling Co	mpai	ny: Alroy Drilling		
Proje	ct Nan	ne :	El Toro 5						Type of Rig	g :	Earthdrill Bucket Auger		
Proje	ct Nun	nber	: 18184-01						Drop :	12"	Hole Diameter :	26"	
			of Hole : ~						Drive Weig	ht :	0' to 24' - 2400lbs, 25' to 44'- 1550lbs,		
Hole	Locati	on :	See Geote	chnic	al Ma	р					45' to 62' - 850lbs		
										Lo	ogged by ARN/KTM		
				ē		if)				Sa	ampled by ARN/KTM		
ft)		D		Sample Number	_	/(bc	(%	lodi					st
) uc	ft)	Lo Lo	S	Ž	no	nsit	e (°	Syn					Гe
/atic	th (phic	tude	hqn	Ŭ >	Del	stur	ŝ					e e
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	Sar	Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol			DESCRIPTION		Type of Test
_	60	ų. 11.		R-6			14.6	ML	@60' - Sandy S	SILTS	TONE and Silty SANDSTONE: dark gray	/, slightly	
	-	No.		-							ne gypsum lined joints		
	_								Total Depth				
	-			ļ							[·] Encountered uttings on 3/28/2019		
800-	65-			ŀ							-		
	-			-									
	-			ŀ									
	-			F									
	-			F									
795-	70-			Ē									
	-												
	-												
790-	75-			ļ									
	-			ŀ									
	-			ŀ									
	-			F									
	-			F									
785—	80-			Ē									
	-												
	-			Ļ									
780-	85—			Ļ									
	-			ŀ									
	-			ŀ									
	-			ŀ									
	-			F									
	_				THIS	SUMMAR	Y APPL	ES ONLY	AT THE	SAI	MPLE TYPES: TEST TYPES:		
					LOCA DRILL	TION OF ING. SUI	THIS BO BSURFA	ORING AN	D AT THE TIME OF ITIONS MAY	B R G	BULK SAMPLE DS DIREC RING SAMPLE MD MAXIM GRAB SAMPLE SA SIEVE	T SHEAR UM DENSITY ANALYSIS	
			GC		CHAN	GE AT TH	HIS LOC	CATIONS A ATION WI	TH THE PASSAGE		S&H SIEVE EI EXPAN	AND HYDROME SION INDEX DLIDATION	ETER
			echnical,	_	SIMPI		N OF TI		L CONDITIONS		CR CORR(AL ATTER	DSION BERG LIMITS	
			connical,								CO COLLA RV R-VAL	PSE/SWELL JE	

	ame:	El Toro 5	Logged By: ARN	Trench N	lo: TP-1			
Project Nı	ımbe	r : 18184-01	Date : 3/26/2019		B			
Equipmen	t: Ca	t 420F excavator	Location: See Geotechnical Map	– Engineeri	ng Propen		Geotech	nical, I
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE No	MOISTURE (%)	DRY DENSI (PCF
	a b c	vegetation; roots; bedrock der <i>Quaternary Landslide Deposits</i> @2' to 10' Silty SAND to Sandy moist, stiff/medium dense; ger deformed silty sand and sandy <i>Tertiary Puente Formation (Tp</i>)	<i>(QIs)</i> SILT: brown and yellow brown, herally poorly cemented clasts in a silt matrix i: light gray, slightly moist, hard;	Qcol Qis Tp	CL SM-ML ML			
GRAPHIC/	AL RE	PRESENTATION BELOW:	Elevation : 890' MSL Surfa	ace Slope:	5 deg.		Trend: N	55W
			B - H		+ + + +			
			B B C K C K			Ground	Depth: 11' dwater: None led: 3/26/201	

Project Name: El Toro 5			Logged By: ARN	Trench N	lo: TP-2			
Project Number : 18184-01 Equipment: Cat 420F excavator			Date : 3/26/2019	F actor and	D			10
			Location: See Geotechnical Map	– Engineeri	ng Proper	ties:	Geotech	nical, Inc.
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMPLE	MOISTURE	DRY DENSITY (PCF)
	a	Quaternary Colluvium and Allu @0 to 8' Sandy CLAY and SILT: mottled, moist, stiff; scattered minor iron oxide staining Quaternary Landslide Deposits	brownish black and light brown platy bedrock derived clasts;	Qcol/Qal	CL-ML			
		@ 8' to T.D. Sandy CLAY to CLA stiff; pervasive white mineralia @10' harder material	AYSTONE: medium brown, moist,	QIS	CL			
GRAPHICA		EPRESENTATION BELOW:	Elevation : 877' MSL Surfa	ace Slope:	5 deg.		Trend: N	150W
						Grou	Depth: 10.5' ndwater: None illed: 3/26/207	

Project Name: El Toro 5 Project Number : 18184-01			Logged By: ARN	Trench M	lo: TP-3				
			Date : 3/26/2019	Engineeri	- Engineering Properties:				16
Equipment	t: Ca	t 420F excavator	Location: See Geotechnical Map		ng Propen	lies:	\checkmark	Geotech	nical, Inc
Geologic Attitudes	Unit	SOIL DESCRIPTION:		GEOLOGIC UNIT	USCS	SAMF No		MOISTURE (%)	DRY DENSITY (PCF)
	b	moist, stiff; scattered rootlets Quaternary Landslide Deposits	SILT: brownish black and brown, ; some gravel s (Qls) and Silty SANDSTONE: medium ard; distinct and consistent	Qcol/Qal Qis	CL-ML ML-SM				
GRAPHICA		EPRESENTATION BELOW:	Elevation : 869' MSL Sur	face Slope:	5 deg.			Trend: N	I45E
			2' wide by 1.5' deep excavation at bottom of test pit for infiltration testing			Gro	ound	epth: 8.5' water: None ed: 3/26/201	
						sca	ale :	1 in = 5 ft	

Infiltration Test Data Sheet

LGC Geotechnical, Inc

131 Calle Iglesia Suite 200, San Clemente, CA 92672 tel. (949) 369-6141

Project Name:	El Toro 5
Project Number:	18184-01
Date:	3/27/2019
Boring Number:	I-1, Test 1

Test hole dimensions (if circular)

Boring Depth (feet)*:1.5Boring Diameter (inches):24

*measured at time of test

Main Test Data

Trial No.	Start Time (24:HR)	Stop Time (24:HR)	Time Interval, ∆t (min)	Initial Depth to Water, D _o (feet)	Final Depth to Water, D _f (feet)	Change in Water Level, AD (feet)	Measured Infiltration Rate (in/hr)
1	8:46	8:56	10.0	1.042	1.167	0.125	5.0
2	8:56	9:06	10.0	0.99	1.04	0.052	1.9
3	9:06	9:16	10.0	0.92	0.99	0.073	2.5
4	9:16	9:26	10.0	0.87	0.92	0.047	1.5
5	9:26	9:36	10.0	0.797	0.87	0.073	2.3
6	9:36	9:46	10.0	0.682	0.797	0.115	3.3
7	9:46	9:56	10.0	0.646	0.682	0.036	1.0
8							
9							
10							
11							
12							
	-		-	Measured Infiltrati	ion Rate (No f	actor of safety)	1.0
					Feasibility I	Factor of Safety	2.0

Measured Infiltration Rate (With Factor of Safety for Feasibility Only)

Sketch:

Notes:

Refer to text discussion

0.5

Spreadsheet Revised on: 7/25/2019

Infiltration Test Data Sheet

LGC Geotechnical, Inc

131 Calle Iglesia Suite 200, San Clemente, CA 92672 tel. (949) 369-6141

Project Name:	El Toro 5
Project Number:	18184-01
Date:	3/27/2019
Boring Number:	I-1, Test 2

Test hole dimensions (if circular)

Boring Depth (feet)*:1.5Boring Diameter (inches):24

*measured at time of test

Main Test Data

Trial No.	Start Time (24:HR)	Stop Time (24:HR)	Time Interval, ∆t (min)	Initial Depth to Water, D_o (feet)	Final Depth to Water, D _f (feet)	Change in Water Level, AD (feet)	Measured Infiltration Rate (in/hr)
1	9:56	10:06	10.0	1.068	1.172	0.104	4.3
2	10:07	10:17	10.0	1	1.07	0.068	2.5
3	10:18	10:28	10.0	0.93	1	0.073	2.5
4	10:29	10:39	10.0	0.87	0.93	0.057	1.9
5	10:40	10:50	10.0	0.823	0.87	0.047	1.5
6	10:51	11:01	10.0	0.781	0.823	0.042	1.3
7	11:02	11:12	10.0	0.74	0.781	0.041	1.2
8	11:13	11:23	10.0	0.677	0.708	0.031	0.9
9							
10							
11							
12							
	-	-	-	Measured Infiltrati	ion Rate (No f	actor of safety)	0.9
					Feasibility	Factor of Safety	2.0

Sketch:

Notes:

Measured Infiltration Rate (With Factor of Safety for Feasibility Only)

Refer to text discussion

0.4

Spreadsheet Revised on: 7/25/2019

Infiltration Test Data Sheet

LGC Geotechnical, Inc

131 Calle Iglesia Suite 200, San Clemente, CA 92672 tel. (949) 369-6141

Project Name:	El Toro 5
Project Number:	18184-01
Date:	3/27/2019
Boring Number:	I-1, Test 3

Test hole dimensions (if circular)

Boring Depth (feet)*:1.5Boring Diameter (inches):24

*measured at time of test

Main Test Data

Trial No.	Start Time (24:HR)	Stop Time (24:HR)	Time Interval, ∆t (min)	Initial Depth to Water, D_o (feet)	Final Depth to Water, D _f (feet)	Change in Water Level, AD (feet)	Measured Infiltration Rate (in/hr)
1	11:23	11:33	10.0	1.036	1.125	0.089	3.5
2	11:33	11:43	10.0	0.984	1.04	0.052	1.9
3	11:43	11:53	10.0	0.94	0.984	0.046	1.6
4	11:53	12:03	10.0	0.891	0.94	0.047	1.6
5	12:03	12:13	10.0	0.844	0.891	0.047	1.5
6	12:13	12:23	10.0	0.813	0.844	0.031	1.0
7	12:23	12:33	10.0	0.776	0.813	0.037	1.1
8	12:33	14:03	90.0	0.599	0.776	0.177	0.5
9							
10							
11							
12							
	-	-	-	Measured Infiltrati	ion Rate (No f	actor of safety)	0.5
					Feasibility I	Factor of Safety	2.0

Measured Infiltration Rate (With Factor of Safety for Feasibility Only)

Sketch:

Notes:

Refer to text discussion

0.3

Spreadsheet Revised on: 7/25/2019

PROJEC	<u>10/4/9 2</u> T			DRILL	HOLE	No	BORING LOG <u>TGB-5</u> PROJECT NO. <u>1901591 27</u> TYPE OF RIG Bucked Aver
HOLE I ELEVA	IAMETER	ZY" HOLE-&	841'	DRIVE Ref. C	Weigh Dr Dat	т <u>-</u> им -2	- Gentechnicel Map DROP IN
DEPTH c Feet Graduic	ATTITUDES	TUBE Sample No.	BLOWS PER FOOT	DRY DENSITY PCF	POISTURE CONTENT. T	Sout CLASS.	GEOTECHNICAL DESCRIPTION Logged by Sampled by
2 	111 100 111 100 111 111 111 111				•		Reade Formstion, Sozuel Metaber. as' the grey with too realling fine sandy sithing as' 24 5 the white readistance bee's should black patter muncreds; boad contact is forg standed (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (0.7' All for the stands of the green clay, sheared (1.5' for the stands of the green clay, sheared (1.5' for the stands of the green clay, sheared (1.5' for the stands of the stands (1.5' clay stands within the silf of the stand (1.5' clay stands within the silf of the stand (1.5' the 5' thick clay stand (1.5' the 5' thick clay stand (1.5' the the stands of the suffer in a stands (1.5' the stands of the suffer in a stand (1.5' the the stands of the suffer in a stand (1.5' the stands of the suffer is a stand (1.5' the stands of the suffer is a stand (1.5' the stands of the suffer is a clay (1.5' the stands of the lay stand (1.5' the stands of the lay stands (1.5' the st
	110 110 110 110 110 110 110 110						 Att ' to 1\$ " thick II grey the soudstare; bolds coulded is scoured; some biotite within toninations; sithtone helow is motified red-brown and black, reduction sitems, along joint Ciso' Taint, gypsum filled Ciso' Taint,
	11111111111111111111111111111111111111						0217' 4" thirt sheard give rithtore 0227' 4" thirt sheard give rithtore 0220' 5" thirt white foodstone 0230' 5" thirt sheard give sitter 0235' 4" thirt sheard give sitter 0216' sheard sitter 0255' thir chy seam 0255' thir chy seam 0255' thir chy seam 0256' Silecout layer
11.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							10770' trasiunt chysroom di 290', Her

505A(11/77)

P

ł

LEIGHTON & ASSOCIATES

SECONDENSION OF A DESCRIPTION OF A DESCR

saturia va

a strategie in the state of the second state of the second state of the second state of the second state of the

a kener kan yan di kener di kener

					GEC	DTECHN	ICAL	BORING LOG
Dat	E/Ø/	6/91			Drill	HOLE	No	<u>768-5</u> SHEET <u>2</u> OF <u>4</u>
Pro	JECT	PA-40						PROJECT NO. 1501511-07
		Co. Cons	taches	Duller	<u>s Ser</u>	1110	···· ···	TYPE OF RIG Breter Hisee
Hol	e Diam	1ETER	24"	 ,	Drive	WEIGH	T	DROP 1
Ele	VATIO	TOP OF	HOLE-B	<u>945</u>	REF. C	or Dat	UM	See Geotechnical Map
DEPTH Feet		ÅTTITUDES	TUBE Sample No.	BLOWS PER FOOT	Y DENSITY PCF	MOISTURE CONTENT, Z	8016 CLASS.	GEOTECHNICAL DESCRIPTION
		4	ŝ		DRY	-3	ŝ	SAMPLED BY
70		с 						
30 -		eisz.∀*						052.4" 5" thick white samptone, biolite · Chazer structure
-		11424794						@ 94.2' Clay scam @ 94.2' Als ' thick while vitric fult, st. altered; uniform
35		455.4 ' C (14 2E,104						thickness ess.9' t "thick clay seam
-			-					e 18 ° Situeous layer e 58 2' 0.2' thick while sendstone bed e 58.8' 0 2' thick discontineous somdetore bed
40 -			-					
-		0419' :11NWW,961						e 413' Grey Filtsbur, stearal 741.9' \$ to \$" thick clay sesun 9475' 9rey clay sean
								0430' Silk bont lelow contains frequent why scows & about a 14" spacing, nonpheared
		ēši U'						asiv' ty "thick clay scam, sold, plostic, steared
		65: N87,10W						e szol Clay szam e szol Clay szam e szol rillstone; rillstone listow contains frequent clay szami to t to 1" spacing e szul sheared rilt e
	مر شد و ما مراقب و است	й 57 Ч° Т С 57.7° ет. на, на						053.4' fin to not grand cand bid; white socrass 057.4' fin to not grand clappy sillstone, v. soft, not, highly physics, hason the surface of 2.8', sillstone held contains series of nonphistic clays 053.5' Thin clay som; shard
60 -		(Production and advanced				L	1.500 March 1	053.5' Thin eley tom; stard

Marc

7

LEIGHTON & ASSOCIATES

ornerornes, en

and the statement of the

. provinged programmers and a constrained

المشافرة أبأتك فارتصبون والمتحاوين المت

antoriyayi jertimetrisati

40.000

Pro Dri Hoj	JECT LLING	<i>ю/с/ч ра-чо</i> Со <i>Се</i> л IETER I Тор ог	tectors	<u>Devi</u>	DRILL <u>Ving S</u>	HOLE	No	BORING LOG <u>TGB-5</u> PROJECT NO. <u>PROJECT NO.</u> TYPE OF RIG <u>Builted American</u> DROP <u>IN</u>
DEPTH c Feet	GRAPHIC Log	ATTITUDES	Tube Sample No.	BLOWS PER FOOT	DRY DENSITY PCF	MOISTURE CONTENT, Z	\$015 CLASS.	GEOTECHNICAL DESCRIPTION
		<pre>#65.0' r5:N6E, NW 266 5' 4 6'71.0' C'1.013E, 12W 4 71 7' r5:N7E, 10W 4 71 7' r5:N7E, 10W 200 4' r60 4'</pre>						641.7' I" thick greg alog ; highly plastic, sheared 651.7' I" thick greg alog ; highly plastic, sheared 655' It to b "thick alog ; sheared; some non-plastic alog to be 665' Stepage 670.7' 0.3' thick zone with \$" non-plastic alog some 670.7' 12 + \$ " thick alog some plastic , polithed to tail surface 972.9' \$" thick alog some; non-plastic , polithed to tail surface 673.9' \$" thick alog some , non-plastic , polithed to tail surface 673.9' \$" thick alog some , non-plastic alog some 6" 874.9' \$" thick alog some , non-plastic alog some 6" 800' \$" thick alog some , non-plastic alog some 6" 800' \$" thick alog some , plastic , theored 800' \$" thick alog some , plastic , theored and combated 800' \$" thick alog some , plastic , theored and combated 800' \$" thick alog some , alog theored and combated 800' \$" fourtual) th i" thick (north with and combated 800' \$" fourtual) \$" thick (north
·90 -	11.21	Selfer 1/- Hong Sold School Scool	_				e con fontui	\$ \$9.7 to " (routh will) to 1" thick (north 124) clay stom; Lighty plastic, large gyptom crystells on northorn that

3057(11/22)

-

1

^

as ... Case

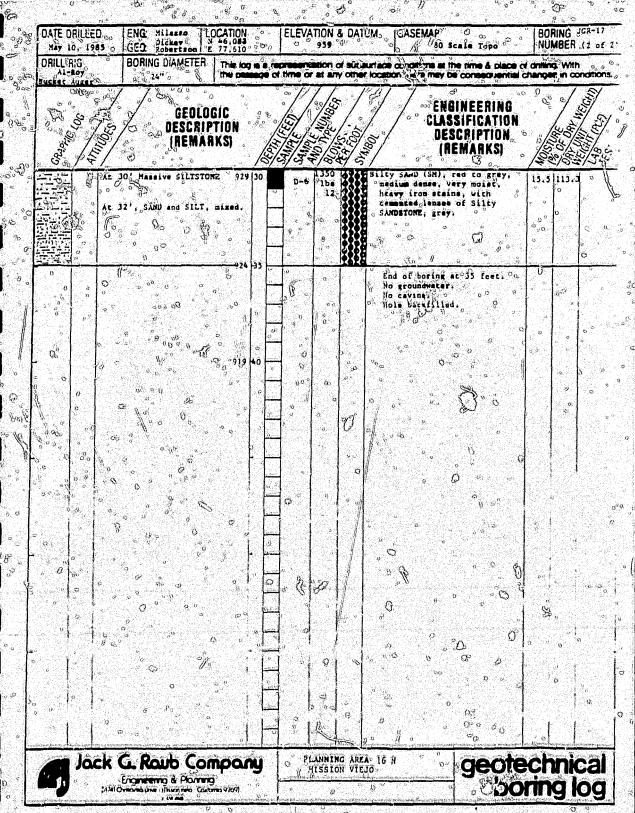
LEIGHTON & ASSOCIATES

appensioner and the state of the second s

and a second

where a contract of the second s

944


Pro. Drii Holi	JECT LLING E DIAM	10/6/92 PA CoCo. 1ETER 1ETER	40 ntroctor 24"	s D	DRILL	HOLE Ser	No	BORING LOS <u>IGB-5</u> PROJECT NO. <u>1901591-0</u> TYPE OF RIG <u>Bucket As</u> <u>DROP</u> <u>See Geolechnicel Map</u>
Дертн « Feet	[<u>,</u>	ATTITUDES	TUBE Sample No.	BLOWS PER FOOT	DRY DENSITY PCF	MOISTURE CONTENT, Z	Soit, CLASS. (0.5.C.S.)	GEOTECHNICAL DESCRIPTION LOGGED BY
# - - - - - - -		€ 11.2 ' 5 : N2 W,11 W € 96° - ₹						#903 I thick layer containing unspular freetongular shaped lenses of the grey sith taxe #91.2' It grey sithstone lenses; as above; continuous around hole; I to 2" spacing herbeen lenses
ד 								<u>Males</u> TD 99' - concretionary kyer & 93' Down Hote Lussen to 93' Standing works & 96' No caving
- 207								
10 - - - -								
70		tedast attaction at a	<u>مر</u>	14.0.2 (c %)	anana milinara	and the second second	110500 WY-	

3052(11/77)

8

LEIGHTON & ASSOCIATES

DATE DBILLED ENG MILGARO LOCATION BORINGJCZ-17 ELEVATION & DATUM BASEMAP Hay 10, 1985 IGED Dickey NUMBER (1 of 80 Scale Topo 959 0.0 E 27.510 **DRILL RIG** BORING DIAMETER This log is a regressingtion of subsurface conditions at the time & place of gniling. With R"Bucket Aurer the case ange of time or at any other location there may be consequential changes in conditions 34 ENGINEERING GEOLOGIC SO 0 (AEMUDES CLASSIFICATION DESCRIPTION CRIPHE. **A DESCRIPTION** 80, REMARKS O (REMARKS) 194 2150 Sandy SILT (ML), brown; trace of Colluvium 1ba CLAY, damp, fine SAND CASTILLY SAND USHI, WALLE At 21, Interbedded silty SAND and Siltstone, Plante Forme-tion - Soguel Member BINGON. = TONE Becoming grey brown with grey clayey SILTSTONE. At 4', Zone of Very week § SILISTONE, 1' thick." At 3', Dark grey denue 95 SILISTONE With thin rusty 0,, 954 7/5 D~I Clayey SILTSTONE (HL), grey 25.9 99, 8 trey CLAY Interbade every brown, stiff, saturated, 3-1 caliche streaks, tron stains HABE, AC O', Bedding plane 1 190NW At 8', Horisontal Bed. Ø. ST 13 Grey SILTSTONE SILLY SAND (SH), grey brown, ø 33.31 o interbedded with clayey SILT 89. 949 10 (ML), grey, fine SAND, from D-2 At 11 ; Contact. White to tan Cains CLAY (GIL), highly plastic fine-grained micaceous SANDSTONE . Ġ, slickensided. At 12" Silty fine SAND At 13' Silt bed, 2" thick. . SANDSTONE, cemented, hard drill ingi JE THE WAY A WAY JE At 14' Massive, white, fige-· PO , G BINW SILLY SAND (SM), red grey grained, Silty SAND with 15 1 concretions: 124 HS SAND (SP), white, dry, medium, 3,9/113.6 0-11 - 6 dense, fine, trace of SiLT, 10 3-21 micacedus, iron stains \$ à 42 (\mathcal{O}) SAND becomes rust-stained 119 20 SAND becomes rust-stained 119 20 SAND 1 At 205', contact. Dark grey A siLTSTONE, partly bedded SILLY SAND (SH), grey brown, 19.71107.9 0-4 1 wet, from streaks, fine SAND, j interbedded with Clavey SILT+ LIONE (HL), grey baist, sine - At 22" Becomes massive to AND, LEON TEALAN porly budded. At 223', Silly SAND incerbedded with SILT 12 At 25" Plastic LLAY bed. 0 8 1 \$ 0 BLOU WHICH IN BASSIVE, GARA 432 80 SILISTONE incorbeds becoming more 18,4/111.3 grey SILTSTONE sandv, fine to coarse, saturated, Bacomine core a silty at 205 face. Cho? Ó at 27" PAND Interpods" AL LIN' GLEY SILISTONE 3+3 1 AL 19". DELLEBOUR SILTSTONE TS anzov (caser e thick nearly nori-Committe Sallostone, hare erill* ing at 285 Teet. Jack G. Roub Company geotechnical PLACHING AREA 16 H VISSION VIEJO Engineering & Planning (424) Cristonia I (Marriver) - Control (289) bonng log 1.14

a 2 mart and a fair and a set of the second of the second s

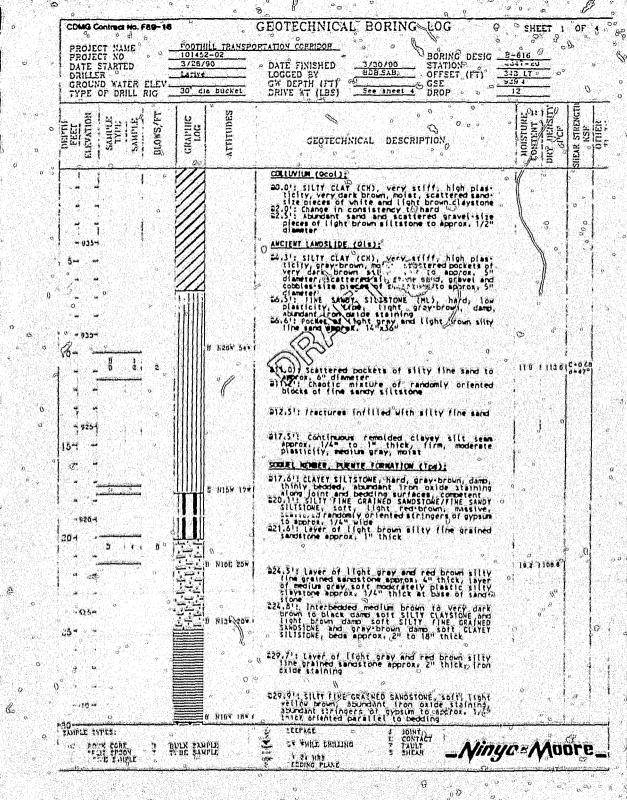
DAT	E OE	BSER	VED:	4	<u> X%5/3</u>	<u>9</u> 0	METHOD'OF DRILLING: <u>24"_Bucks</u>	: Maer
LO	GGEC				GROL	IND EL	EVATION: 877 to LOCATION: 500 P. 55	Plan
DEPTH (FEET)	CLASSIFICATION		UNDISTURBED SAMPLE		MOISTURE CONTENT (%)	IN PLACE DRY DENSITY (PCF)	BOHING NO:	SOL TEST
- 0 - - 5 	α 19 0 0 0			X	0 1 1 5 6	. 8 	LANDSLIDE DEBRIS: Light gray sandy siltstone, mostled, fractured, roots	20 ⁰ α ⁴ .2 ⁹ 0 ² ⁴ .2 ⁹ 0 ² ⁵ .0 ⁴ 0 ² ⁵ .0 ⁴ .0 ⁴ ⁵ .0 ⁴ .0 ⁴ ⁶ .0 ⁴ .0 ⁵ ⁶ .0 ⁴ .0 ⁴ ⁶ .0 ⁴ .0 ⁴ .0 ⁴ ⁶ .0 ⁴ .0 ⁴ .0 ⁴ ⁶ .0 ⁴ .0 ⁴ .0 ⁴ .0 ⁴ ⁶ .0 ⁴
10		2	\mathbf{X}	∇	30.2		JLU.5' rupturo surrace, irregular	AEGUVHICUT VAVAPALI
- 16			$\sim M \sim \sim$	\bigtriangleup	30.2 L 23.9	6	contact, slight seepage, R.S.: 0.00 N3E/9NM (general) 5 COLLUVIUI: Dark brown silty CLAY, wet, sott, toots, porous, callghe deposits	HYDROMETER ANALYSI: ATTERBERG CIMITS MAXIMUM DENSITY
ب ۲۵۰۰ ۱	С. 11. 21. - Ц.	Ó S	-ŭ		9 7 7	and the second se	BEDROCK: FUENTE FORMATION Jrad to bull silty SANDSTONE, @ weathered, wortled, poorly tedded 321 Joupage - (rost upslope) \$	an veer such
	s S		0		9	0 % 5	Clay serm as alicks cresent, 5	DI ALT DIAAR DECHANICAL DIALYCI: NTTERBERG LGHIZS NYDROMETER ANALY.I:
3 س0		م مستقبل	в Х	\mathbf{x}		9 - 1 - 13 - 13 - 13 - 13 - 13 - 13 - 13		
-3(-3(33 6 0 4	**************************************		2		•	POTAL DEFTH 311	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
10-	- 40- -		0-1 5	P	· · · ·	*		9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
in	NO.	5.00	2-17		1			FIGURE:

C

6

Gui but was shown in the second state of the second state of the second state of the state				100	ngG	1.42	¥.	- The Section 3	EVATION: She LOCATION: See Plot Plan
 and brown placy SILSZONE, Stactured, well bedded, calible streaks 32' bedding with thin Mayors'of oxidiced sand 33' CLAY Layer, 3" thick, pecilial 34' CLAY Layer, 3" thick, pecilial 35' position and fracturining knorease 36' badding with thin Mayors'of 37' basad Rupturg Sufface, 1000 think 36' badding with thin Mayors'of 37' badding with thin Mayors'of 38' badding with thin Mayors'of 38' badding with thin Mayors'of 39' badding with thin Mayors'of 39	0a 0	DEPTH (FEET)	CLASSIFICATION	BLOWS/FOOL	UNDISTURBED	BULK SAMPLE	MOISTURE CONTENT (%)	PLACE	SOIL (TEST
3 20.1 42 312 thin .dvers of comented SULTIONT 15 Size thin .dvers of comented SULTIONT 16 Size thin .dvers of comented SULTIONT 20 Size thin .dvers moist 16 Size thin .dvers moist 20 Size thin .dvers moist 21 Size thin .dvers moist 22 Size thin .dvers moist 23 Size thin .dvers moist 24 Size thin .dvers moist 25 Size thin .dvers moist 26 Size thin .dvers .dvers moist 26 Size thin .dvers .dvers .dvers .dvers 26 Size thin .dvers .dvers .dvers 27 Size thin .dvers .dvers .dvers 28 Size thin .dvers .dvers .dvers 29 Size thin .dvers .dvers .dvers 20 Size thin .dvers .dvers .dvers 26 Size thin .dvers .dvers .dvers 27 Size thin .dvers .dvers .dvers 28 Size thin .dvers .dvers .dvers 29 Size thin .dv	а а а а а а а а а а а а а а а а а а а	15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	د ۵	0 0 0	e	r 20 1 0 10 0	ه من	9 9 8 8 8 8 8	and brown platy SILTSTONE; fractured well hedded, Caliche streaks 22'_bedding: N10E/15NW 23' CLAY layer; "!" thick, patallel to bedding with thin Jayers of oxidized sand 25' moisture and fracturing horease 36' bedding: N15E/15NW
215.2' Ensal Ruggurd Surface, 1" CLAY seam, soft and very moltat R. S. "MARALLINA, NALEXISTONE Inter- layered with oxidined SADETONE Inter- layered with oxidined SADETONE, supset 315.2' Created CANDETONE Led, 	0 ° 0 0	,10	т. Д	в 8 4	X	X	20.2	эġ, °	
1 16.3 * shear: ::600/7350/ 117.1* ordeen ::NNSTONE Led.		15	1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	6				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seam, Soft and Vory moist R.S.I. <u>N14E/11:W. N14E/151W</u> <u>BEEROCK:</u> FUENTE FORMATION Dark brown and gray SILTSTONE inter-
0 1 <td>2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0</td> <td>· · · · · · · · · · ·</td> <td>1) </td> <td><u>и</u></td> <td></td> <td>$\mathbf{\hat{S}}_{i} = \left[\mathbf{\hat{S}}_{i} = \mathbf{\hat{S}}_{i} \right]_{i=1}^{n}$</td> <td>ج المراجع المراجع</td> <td>2 </td> <td>Layered with omidized SANDSTONE, Junse 316.3'schear: :6007735W 117.1' orange LANDSTONE Led, dding:W/152W 117.1' orange LANDSTONE Led, dding:W/152W 117.1' orange LANDSTONE Led, 1216doing:W/152W 1220' green Siletone Loosita 1220' green Siletone Loosita 121' stange LANDSTONE Led,doined, 121' stange Landstonedoined, 121' stange Landstonedoined, 121' stangedoined,doined, 121' stangedoined,doined,doined, 121' stangedoined,</td>	2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	· · · · · · · · · · ·	1) 	<u>и</u>		$\mathbf{\hat{S}}_{i} = \left[\mathbf{\hat{S}}_{i} = \mathbf{\hat{S}}_{i} \right]_{i=1}^{n}$	ج المراجع	2 	Layered with omidized SANDSTONE, Junse 316.3'schear: :6007735W 117.1' orange LANDSTONE Led, dding:W/152W 117.1' orange LANDSTONE Led, dding:W/152W 117.1' orange LANDSTONE Led, 1216doing:W/152W 1220' green Siletone Loosita 1220' green Siletone Loosita 121' stange LANDSTONE Led,doined, 121' stange Landstonedoined, 121' stange Landstonedoined, 121' stangedoined,doined, 121' stangedoined,doined,doined, 121' stangedoined,
小小和我们的自己的复数形式,我们的问题,我们的心心和我们的是我们的问题,我们就是是这个人的,我们们就是我们的问题,我们的是是我们的我们的,我们们们就是我们的我们的。 第二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	$\frac{1}{2} \left[\frac{1}{2} + 1$				<u> </u>				<pre>/* Jobale igove cineffed fill List, J/4" hick,</pre>

р 1 — О		à) 	o Jen		 /6/83	<u>u v</u>	METHOD OF DRILLING: 24." Bucked A	o te o te o
а 1940 - 19		IE OB			79652 Test. 10.	Bernier Bailer 1	2012/01/14/14/2012	EVATION: 962± LOCATION: Ste Plot Plat	http://doi.org/2011/19/10/10/10/10/10/10/10/10/10/10/10/10/10/
j so so ^{y n}	DEPTH (FEET)	I Z	BLOWS/FOOT			MÕISTURE CONTENT (%)	IN PLACE DRY D	BORING NO	
			- 1	o 0		້. ເວັ	_ م	COLLUVIUM: Dark brown SAlty CLAY, very moist, soft porous	
	۰ ۶	2	a 		9	4 	g	23' caliche stroaks	ρ. Ο. μες μος φ. θ.Υ.Ο. ο
j	2 0	6 6 C	2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2	0	0	а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 	Motuled interbaddod Silfrone and SANDSTONE, dry, well bedded Bedding: N36W/66NE	
4		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a C	×	×	21.3 J.	95 °	and concorred, loose, begding as above	ATTERBERG LIMITS
	ν 15 - νδο		6 0 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , 0	4	به الا الا الا	b w a a a b b b b b b b b b b b b b b b	
	20- 20-		8 ° ° ° °	с а а	2 2 2	e ¢	د م م	Q18' Concrectionary SIDTSTONE 8" thick, fractured, dedding: N25W/51113 420' siley chilostone, light dray to built, itan atigined streaks, sort, 6" thick "	, , , , , , , , , , , , , , , , , , ,
\$/! 	25		0 7 7 8	9 20		e 6	e g	122" Jarn grav Shirsfolle, cractured soit 223' (" CLAVI)scall, Boft, wet, Sontin- loug around noic, Sheared, with slicks sr. 13467201W 125' Jay poorly pedded, Tractured	$\begin{bmatrix} \varphi & \partial \varphi \\ \delta & \partial \varphi \\ \delta & \partial \varphi \\ \delta & \eta & \varphi \\ \delta & \eta & \varphi \\ \delta & \eta & \eta & \eta \\ \delta & \eta & \eta \\ \delta & \eta & \eta & \eta \\ \delta & \eta & \eta \\ \delta & \eta & \eta & \eta \\ \delta & \eta & \eta \\ $
"_, ¢ , ; ; ; ; ;	9 C S		, al. W	0 0 0		0 1 1	5. 9 - 90	SANDSTONE, 10080 0261 "ISBAS R.J. CDAY SOOM 1 15 " <u>the sources</u> OR.J.O. NSTRAIM <u>BEDROCK</u> , UEXTE POPMATION REMOVED SETTONE, MOSSIVE	" Stide Cobrig 18' o BUDROCN '2
				400000 (4)		C C C Martinery	80 <u></u>	shisars with a neum Boposits neurish Sei, 2 thicky interiavered into thin layors of Silror UB J31' mearea LAW layer, or	
ſ,	40			. <u>220</u> 2000 2000 2000	0 (ð) 	<u>рания (19</u> 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Carlon	annibus, est and an ansity and and an	verangers (strings
n i i	JQ	B NO.3	i Marina da series	a a a a a Menopol	riji ki Vizione	<u> </u>			FIGURE: 5
} <i>=</i> <≦	ur b d	8.4 8.4	् ग ्र	44	a (* 1	u f¥	y e		

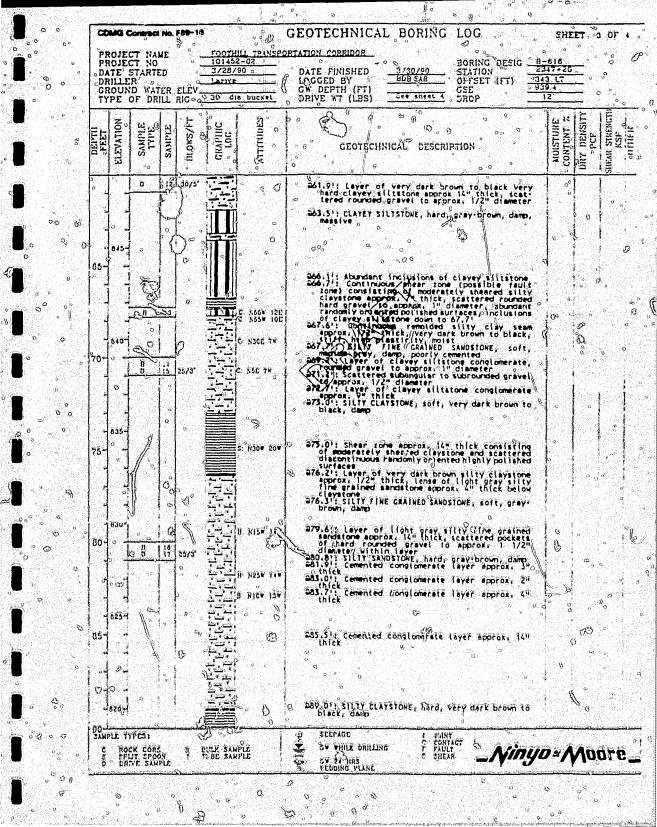

LOGG	unu ba		<u>}</u>		et to the state of the	1000 1000	EVATION: 962± LOCATION: See Mibt Plan
DEPTH (FEET)	CLASSIFICATION	BLOWS/FOOT	UNDISTURBED	BULKSAMPLE	MOISTURE	IN PLACE DRY DENSITY (PCF)	BORING NO. 3 (CONTINUED) SOIL TEST
40-1- 20-3-1-		• • •		а "	ρ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 25 0 4	Dark-gray sandy SILTSTONE, unoxidized 'iron-stained streaks; massive. @41.5' reddish-btown SILTSTONE bed, massive, 1 inch thick u
45- - 	8	20/5 10/5	• • • • • •	。 、 义	° 15.9	् ् ् ष्ठ	W45' butff SANDSTONE bed. friable,
50- 00 - 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	0	2 2 2	<u> </u>	∠ , [₽]	20 20 20 20 20 20 20 20 20 20 20 20 20 2	-	TOTAL DEPTIM 197 N
55- , , , , ,	2 .	а. Э	0 0	9 44	9 9 9	о 0 °	
9 - - 80- -	0	8 ****	а: С	0.0 	0 0	2 5 9 9	
0,5-	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	۰°			9 90 10	2 	
- - 70-	ă	3		÷	ab u	uv v v D	
0 	ے ہ 0		o"e "e		6 () 9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
80-	7.e 13	5 °C, (1	о 1	ับ จุ ซ	ва 18 р.	° 1	

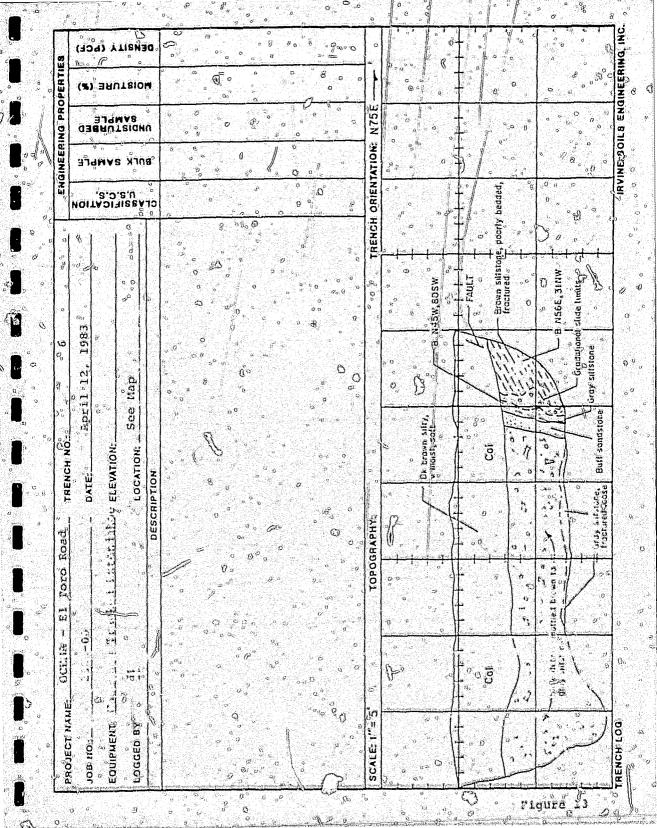
	50	3 10 10	0 0	¢ , 0	B .	. 0	æ.,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	DATE	E 08	ISER	VED:2	37	1/84	۵°4	METHOD OF DRILLING: PO-JAC 21" P	0 ** h + Med_750 1 Har	1 0 •
૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	No. No.	169 900	-	<u>p 19</u>	And in case of the local division of the loc	1.57	ND EL	EVATION: 015+ LOCATION: Che plot pla	n <u>°on</u> <u>~~</u> u	4
· · · · · · · · · · · · · · · · · · ·	DEPTH (FEET)	LASSIFICATIO	FOOT	UNDISTURBED	BULK SAMPLE	MOISTUGE	E DRY (PCF)	BORING NO <u>3</u>		50 B
	D HL	SIFIC	WS/I	SAMP	K SA	OIST	LACE SITY		SOIL TEST	a a
	0.06	CLAS	E C	UNE	BUL	, <u></u> ≆8	IN P DEN:	CONTRACTOR CONTRACTOR]. ∂_3_5
and San of Maria	й. (н.	8	, s 10	9 3	V.	е е а.		, LANDSBIDE DEBRIS SILtyACTAVISTONE, with sandstones in-		в , о
а о О		3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8	° C), N })	0 7 - 0 - 1	25 10 - 10 10	bads, moderately brown to light olive brown, soft to moderately hard, mode		1
૾૽૽૽૽૽૾૽૽૽૾૽	د ج	8,					0	i grate red staining along fractures,	0° ° 0° ° 44° 10° ° 0° ° 64° 14° 0° ° ° 0° ° 64°	0 0
5 ⁴⁰	ļst.	ø	8	\bowtie	0 125) s 21	23.9	82	tonsely to very fractured 7thinly		000
ೆ ೧ ್	0 4 70		*			17 A.	, ° K	2.3 3' Sendstone and shald interbody From 3' moderately hard with dark e vellowigh orange and moderstely red	0000	0
o≓ de suite d	* 10	a	.C			26.9	108	Ji Budding: N17W 165W	៰៳៓៹៓៓៓៓៓៹៹៓៓៓៓៓៓៓៓៓៓	
ە بەر مەرى ئەرى مەرى	15 A	ч р		<u>ء</u> [ک				19' (" Sandstone Interbed 19' (" Sandstone Interbed 18' Speding: N15W 11SW		, ° (
. E ff	21-	3 dx 		G G		a _c o ∘	6	112.5 Wary hard committed shald to 14'	· Co and in	4 1 1
е <u>е</u> е (16- 15-	ATT REAL	10			24.5	9a	Open Joints 3 15'		0 U Particulard
۵. ۲		4 . 0	- o	0) 	ν c (ρ Ο	* Q = C	/216, 5-18.5 Joints NOIB 8188		, a ,
	o do		à A		a a Q	÷	່ງ 1	118.8 Bedding: 1132M 195W 119.0 Shear: 132B 16NW P		Ċв o
ра – о	20-	2 2 2 2	, ŋ	X	η_{a}	20.2	10%	"Milipin Sheargd, Clays 🔊 🗇 "	6	
) 	19-40. 19-40.			8 10	9 1	123.4 Bedding ishnar: ULSN 0750 2° ***** 12 ** Cheared 4:Lav, & are		
	18 18	ja Alta	0 0 20		L SK	() 4		Y Palled Great and Page	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	28- 26d		n Éu>	X		23, ⁰ 5	° 1150		$= \frac{1}{2} $	с. «
		ů.	u ja S	r j	H	૾ૡૻ	$\phi = \phi$		ATTERNERG LIMITS	0
	2011	0	ца , ,	- 4χ 4	10- 1 Mari		v 15 0	Souther and the souther and th	RYDRONETER "	
	305 5) . V. J	X	0 	86,2	T.R.	""" "" Bier, tashir hundur in contemas-	and the second sec	d Qo
0" 8 ° ° ° °	2. S		ų.	2 2 2 1		23 S	O a	A runtit - independent - a a a a a a a a a a a a a a a a a a	a g a co-	
		3	4	o, So	ب د بر	0.0	n, U		æ. 	а ,
	35-	1	usi a	8	19 19 19	155.4	t .d		្លែ	6 2 2
	.% .	v	тар (д. 1	9 			9 1	the States and States	O	
. . .	0				1.1	0 0 0 0 0	0.4		200 200 200 200 200 200 200 200	
8	402 JOB	NOS		82:	<u>- 6 1</u>	Rectingenter	40 showene started			· · · · · · · · · · · · · · · · · · ·
		Arter 3- Gass	<u>_23</u>	07.	<u>- 41</u>	a an	tanih rospinan Ma	IRVINE	BOILS ENGINEERING, INC.	1 30 1 ² (7
		6546		and and a second se	n de la contra de la	Land Lowston	Sector and	and the second	eta terdeza per a ferenzioni l'apara pull'arreare francisca de la construction de la construcción de la constru A construction de la construcción de	200 C

	DATE	ов	SER	VED:		3/1/2	10 0	METHOD OF DRILLING:	huger	(مين ة.
		° .,			. 0	0000		EVATION:	12"	Drop	
	DEPTH (FEET)	CLASSIFICATION	BLOWS/FOOT	UNDISTURBED		MOISTURE F	IN PLACE DRY		8	G SOIL TEST	3
9 (B	40- 3rd		30	X		15.3	125	LANDSLIDE DEBRIS Silty CLAYSTONE, hard, well cemented	1	.3	о ^с .
4 4 1 1 1	45-	- 2 - 5 0 0	2 2 2			0	0	SANDSTONE, 1" ash bed above sheared b clay, very No.4) sl/cks o 945.3 Rupture Surface: N2OW 125W	4 925-5		C
			0 ک	\geq		A. 4	99	BEDROCK SHALE, Intensely fractured, medium share, massive, dark brown to black	2	e o o	e.
0 0	50-	#	39	ХЪ.	5	15.3	103	48.5 - 42.5 SANDSTONE Cheared slay layer, soft, below sandstone	9 9 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		
	*	, 0 2, - 3 2, - 1		ç		0 2 2	. ≫# 	150.0 Beddingishear: Ni2E Linw	0	0 0 2	
	55- -		60	Ź	a de la companya de l La companya de la comp	0 	a 	8			
	- - - 00	τ.	0		ð Ø		-2	Total Lepth 56! Compage Encountered 9 45.85° No Caving	2		
	U -	ц.			1	95 . 0	9				
	06-										
		U	Q					e			
	70-	9						9	-5,5		a
0 8 ² - 1	75-		y y M	- A							1. 1.
- 11 - L	80-	1.2		1 .	1			and the second	i fili i	e profile de la compañía	

C 5 a -0

ų $\langle \beta \rangle$




11 11

Ð

Ø,

08 ° . S. Ø COMB Contract No. F89-18 GEOTECHNICAL BORING LOG SHEET PROJECT NAME FOOTHILL TRANSPORTATION CORRIDOR PROJECT WO BORING DESIG 101452-0 00 STATION DATE, STARTED 3/28/90 DATE FINISHED 2347+20 o o ń 313 6 BDB SAB DRILLER Larive LOCCED BY OFFSET (FT) GROUND WATER ELEY 920,4 GW DEPTH (FT) GEE "TYPE' OF DRILL RIG " 30" die bucket See sheet 4 DRIVE WT (LES) 12 DROP NOISTURE CONTENT 2 DENSITY 6 DES CRAPHIC LOC © ULOWS/F STIREN SAMPLE SAMPLE **FILPYATI** PEET 00 NTITU GEOTECHNICAL DESCRIFTION SHEAR o o 0 6 6 G 10.0[121.4 A HD 15 د ا م ا 0 13/4 00 . 13 DC5 334.81: Laver of very light draw damp soft fin to medium-grained sands tone approx 17% thick scattered trongogide, staining 036.2': Lever of gypenm approx. 174" KZOK 10% ~ 2 6 800-(Oxidized) PUENTE FORMATION OUN 41108 5 4. 15/8 Very dark brown, damp, massive, siltstone, soft, 244.51: Shear rome consisting of highly sheared a sitty claystome/claysey sittstome aporox. 1/2" thick, dark gray, stiff; moderater ly plastic by moist, change in color to dark gray boom, some fine sand ňő 220.21. I have of dark Gray You's stilly Orained sancastone approv. J/2" thick 229.31. there bit dark Dray Zer thick Stained sancastone approx. 1 1/2" thick NION 194 13 fine 5õ il liere. 15 351.01: Laver of dark grav very silly the orgined sandstone approx. 2" thick and the grained of sandstone approx. 2" thick arained a sandstone approx. 6" thick 66 555,211 Lawer of Dight gray silty fine grained sandstore approx. 1" to 5" thick Bioturbaied 555,8". Silt five GRAINED SANDSTONE, Soit; Pryy brown, damp, poorly cemented, massive h kest for 557,211 Commented layer of sandstone approx, 5" thick 10,200 thick of light gray silly fine grained sandstone, frable, scattered pockets of hard commented sandstone 1538,9"; layer of commented sandstone approx, 2" thick PENIPLE TIPES: TELIAGE I JOINT CLCONTACT T TAULT *Ninyo=*Moore_ TH WHILE DRILLING BULK SAMPLE OCK CORE ST THES THEAR VPII $\rho_{1,1}$ 20

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

<u>Moisture and Density Determination Tests</u>: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on driven samples obtained from the test borings. The results of these tests are presented in the boring logs.

<u>Atterberg Limits</u>: The liquid and plastic limits ("Atterberg Limits") were determined per ASTM D4318 for engineering classification of fine-grained material and presented in the table below. The USCS soil classification indicated in the table below is based on the portion of sample passing the No. 40 sieve and may not necessarily be representative of the entire sample. The plots are provided in this Appendix.

Sample Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	USCS Soil Classification
BA-1 @ 28 ft	69	28	41	СН
BA-2 @ 59.5 ft	78	32	46	СН

<u>Direct Shear</u>: Direct shear tests were performed on selected driven samples, which were soaked for a minimum of 24 hours prior to testing. The samples were tested under various normal loads using a motor-driven, strain-controlled, direct-shear testing apparatus (ASTM D3080). The plots are provided in this Appendix.

<u>Torsional Ring Shear for Residual Shear Strength</u>: A drained, residual torsional ring shear test was performed on site clay grab sample (BA-1 @ 28 ft). The sample was tested under various normal loads (2, 4 and 8 ksf) using a torsional ring-shear testing apparatus (ASTM D6467). The plot is presented in this Appendix.

<u>Torsional Ring Shear for Fully Softened Shear Strength</u>: A drained, fully softened torsional ring shear test was performed on site clay grab samples (BA-2 @ 59.5 ft). The sample was tested under various normal loads (3, 6 and 12 ksf) using a torsional ring-shear testing apparatus (ASTM D7608). The plot is presented in this Appendix.

APPENDIX C (Cont'd)

Laboratory Test Results

<u>Expansion Index</u>: The expansion potential of selected representative samples was evaluated by the Expansion Index Test per ASTM D4829.

Sample Location	Expansion Index	Expansion Potential*
BA-1 @ 0-5 ft	97	High
BA-1 @ 5-7 ft	92	High

* Per ASTM D4829

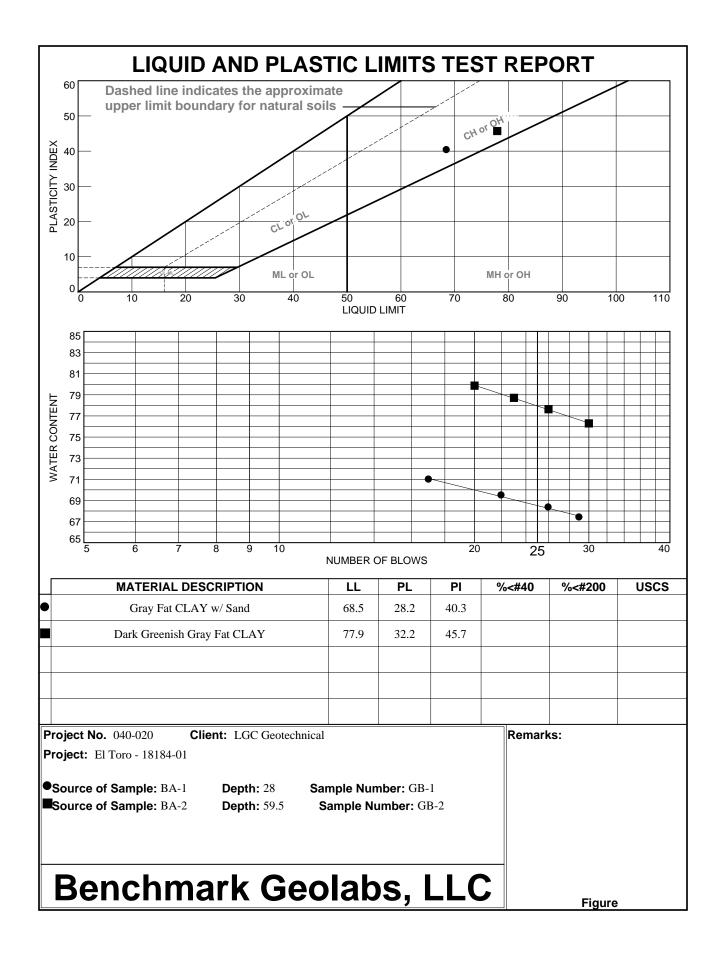
<u>Laboratory Compaction</u>: The maximum dry density and optimum moisture content of typical materials were determined in accordance with ASTM D1557. The results of these tests are presented in the table below.

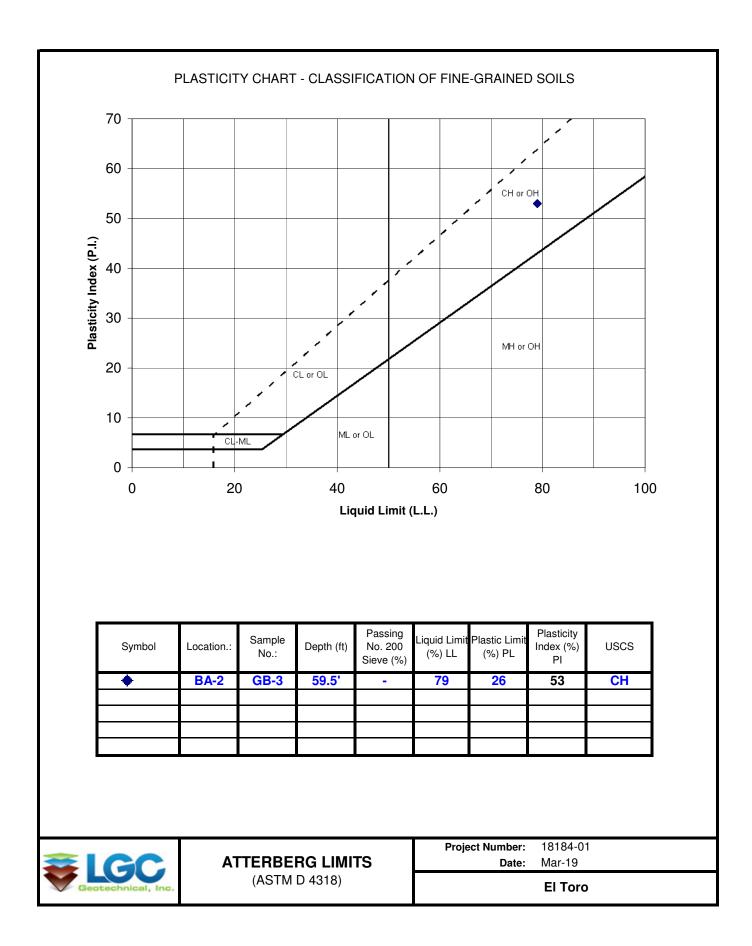
Sample Location	Sample Description	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
BA-1 @ 0-5 ft	Dark Brown Clay	105.5	8.5
BA-1 @ 5-7 ft	Light Brown Sandy Clay	97.0	23.5

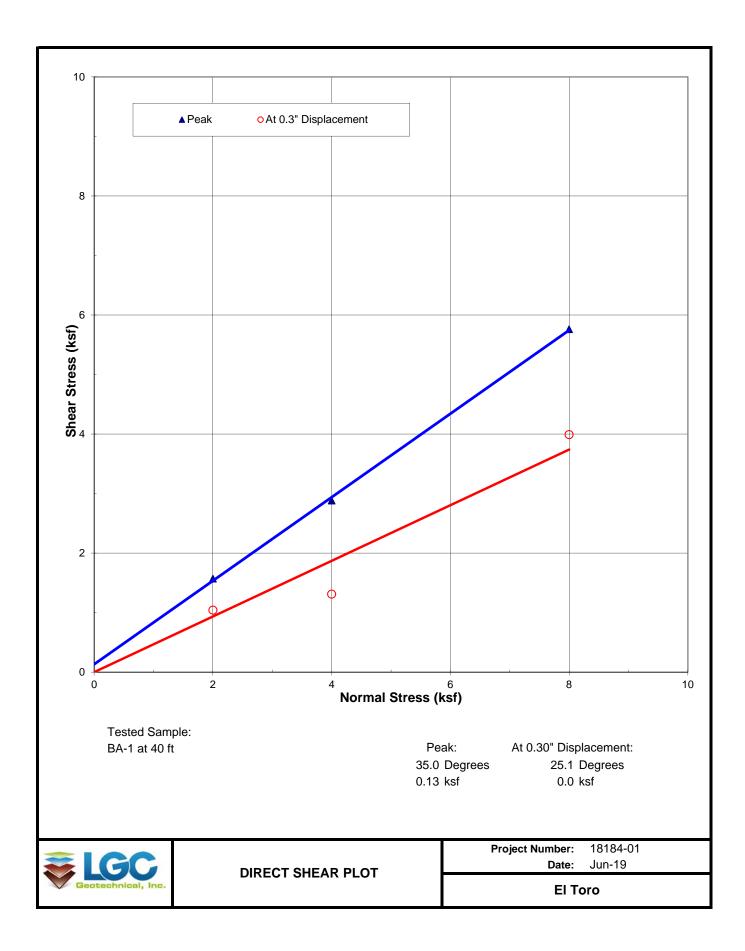
<u>Soluble Sulfates</u>: The soluble sulfate contents of selected samples were determined by standard geochemical methods (CTM 417). The test results are presented in the table below.

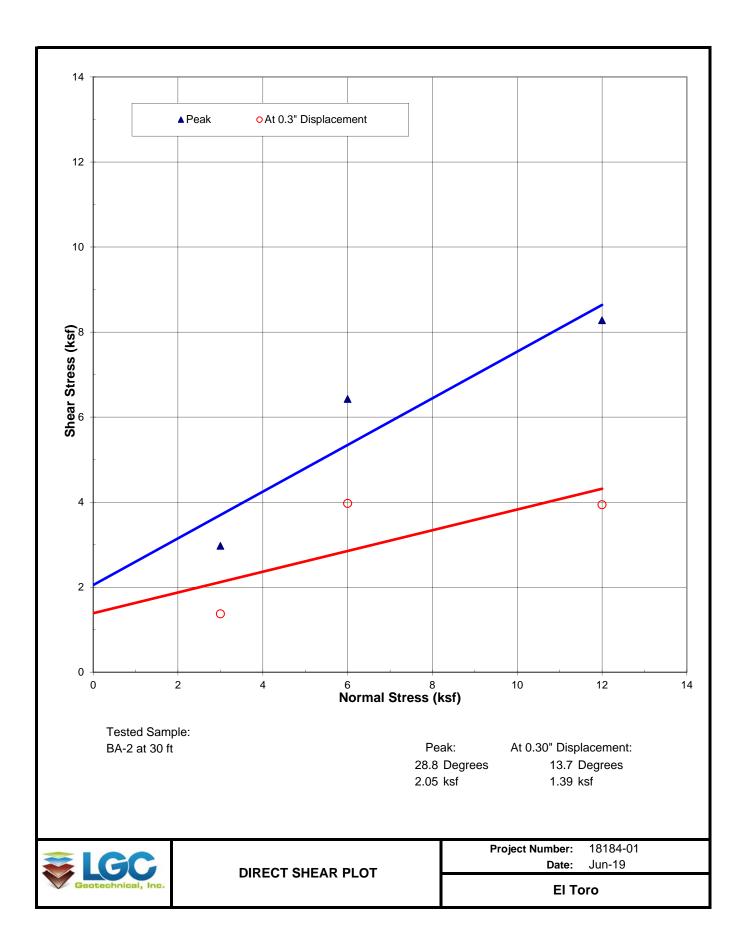
Sample Location	Sulfate Content
BA-1 @ 0-5 ft	~0.03%
BA-1 @ 5-7 ft	~ 0.042%

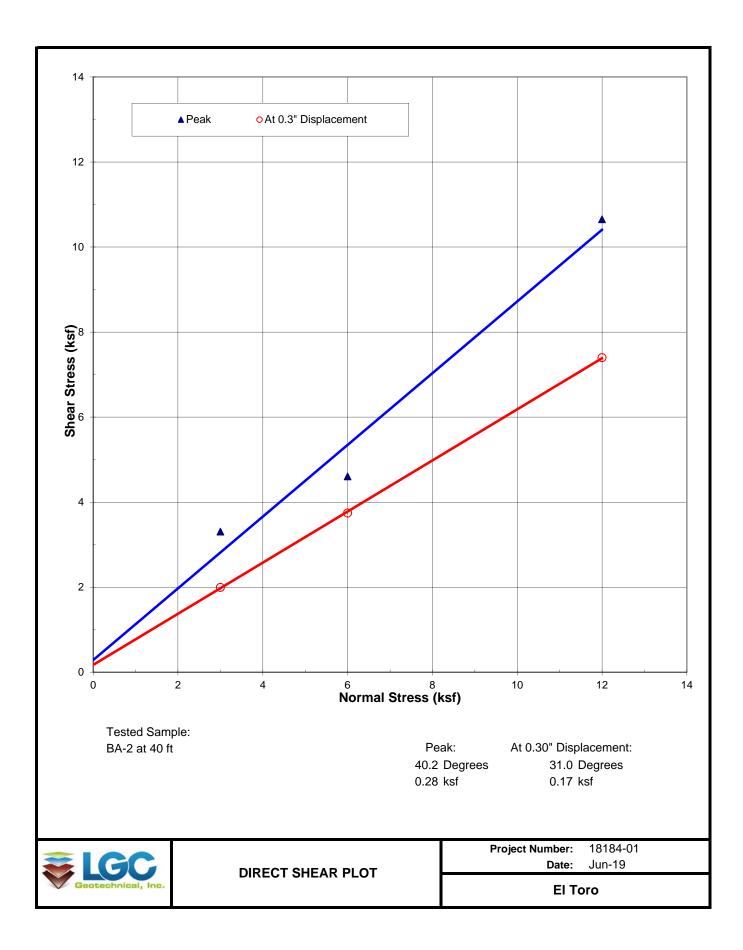
<u>Chloride Content</u>: Chloride content was tested per CTM 422. The results are presented below.

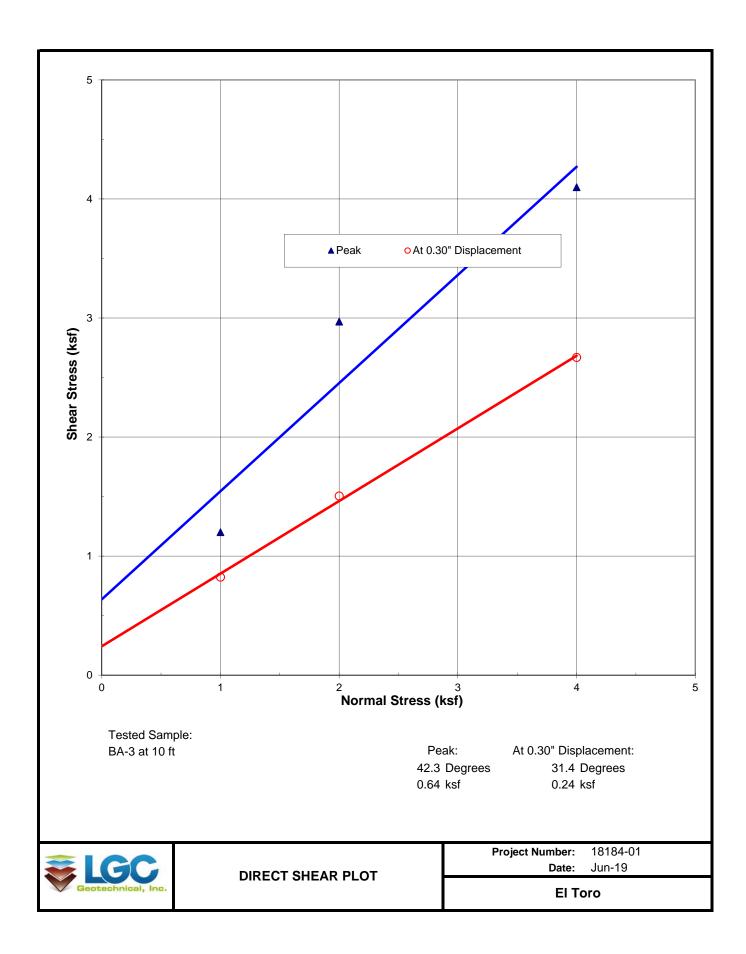

Sample Location	Chloride Content, ppm
BA-1 @ 0-5 ft	380
BA-1 @ 5-7 ft	780

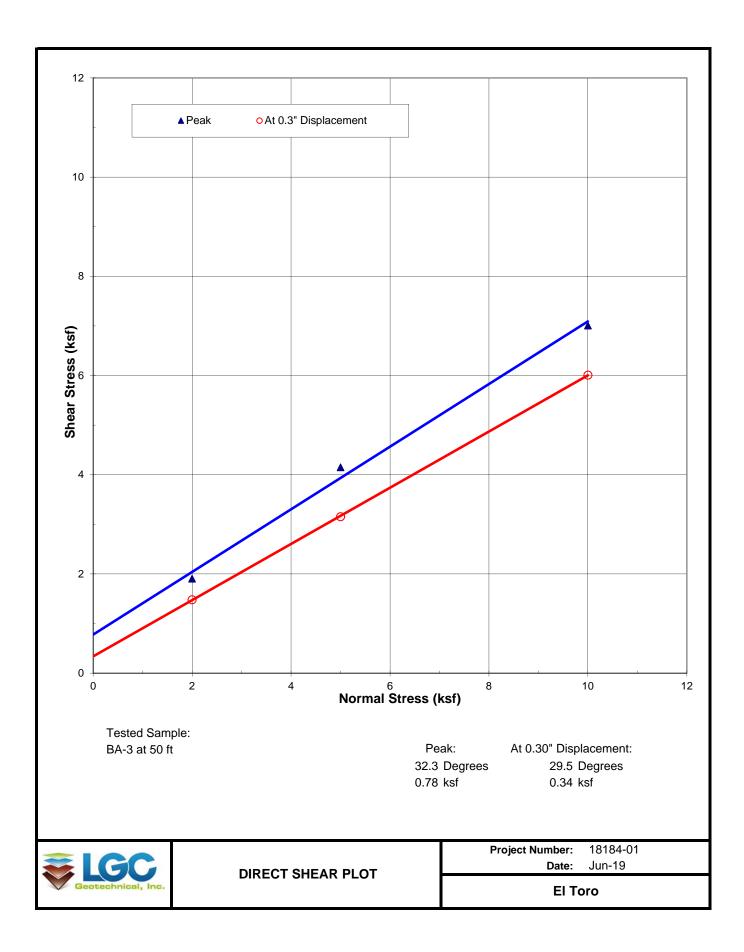

APPENDIX C (Cont'd)

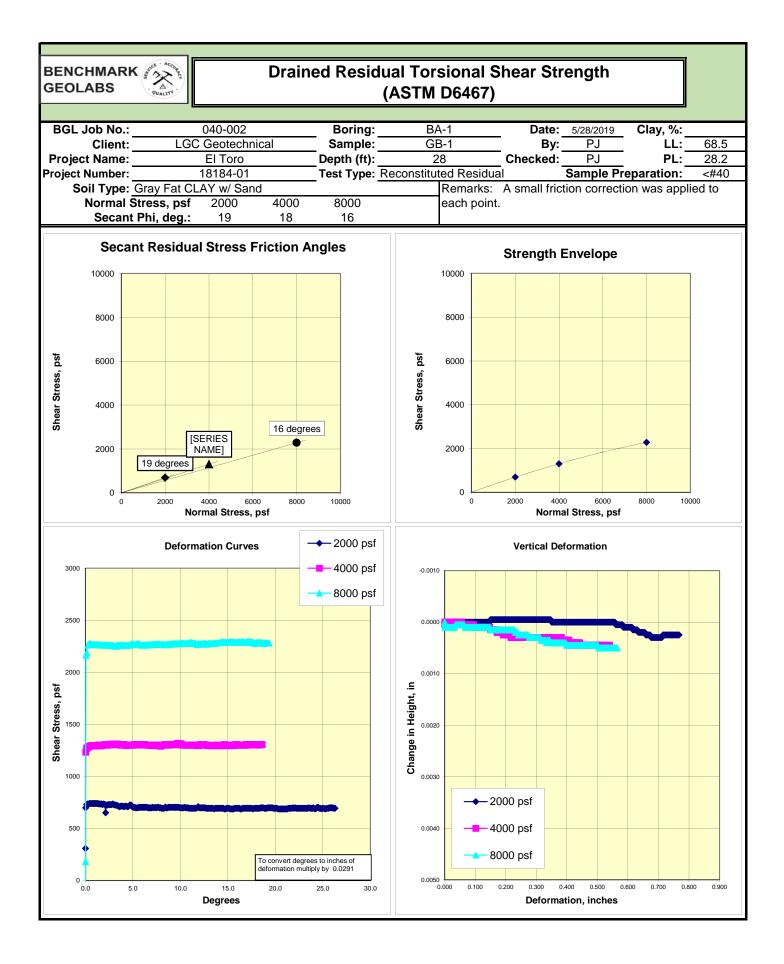

Laboratory Test Results

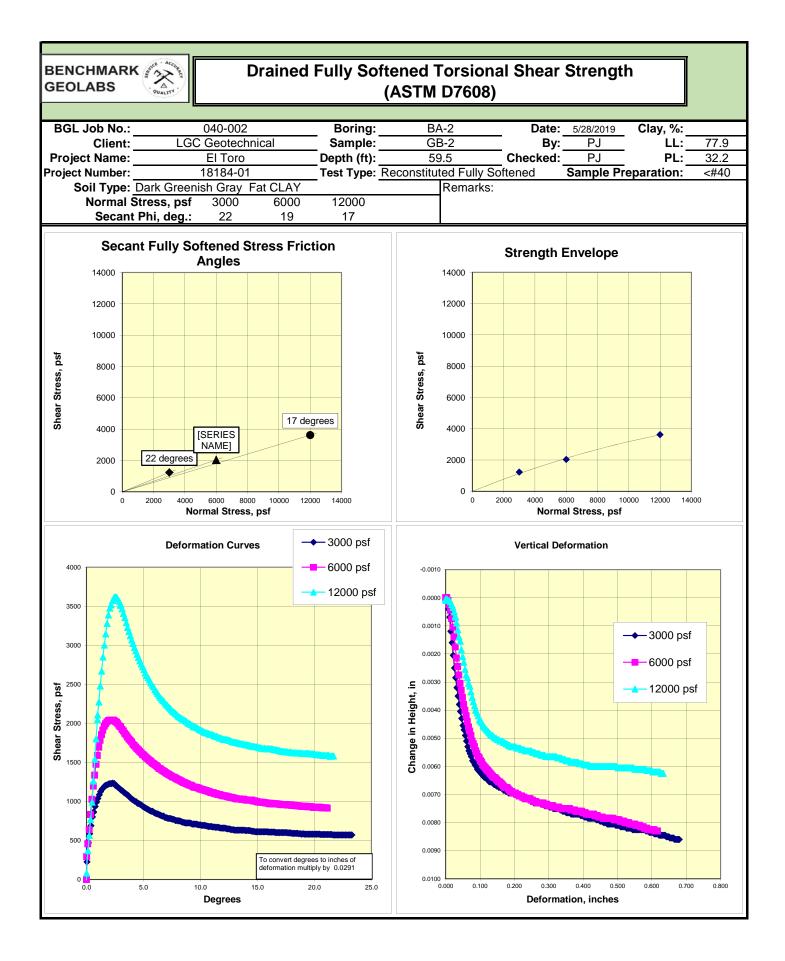

<u>Minimum Resistivity and pH Tests</u>: Minimum resistivity and pH tests were performed in general accordance with CTM 643 and standard geochemical methods. The results are presented in the table below.

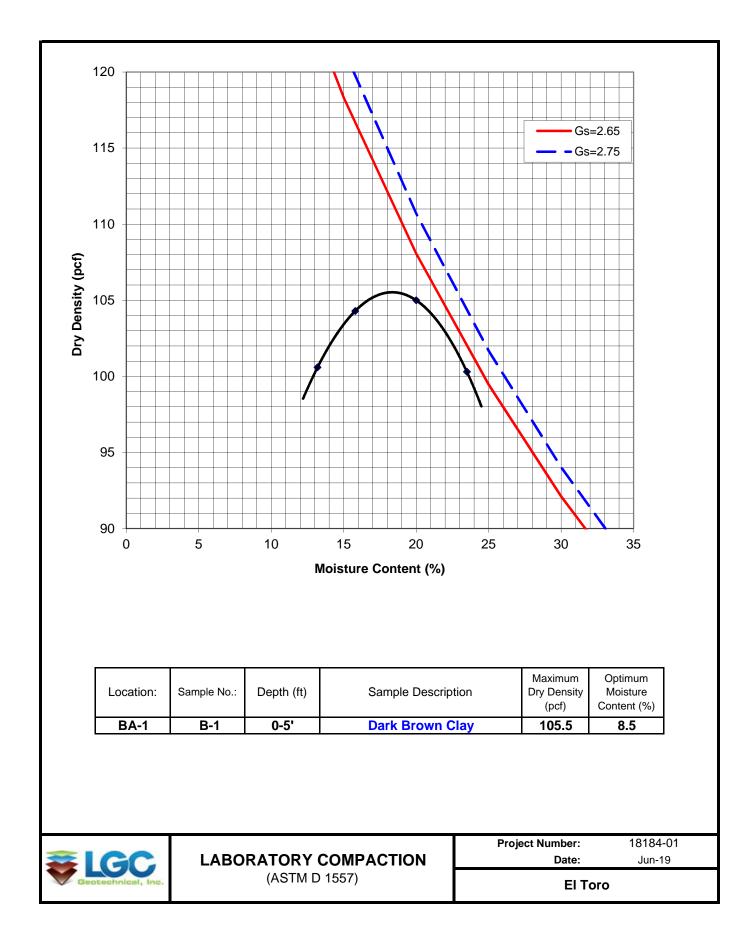

Sample Location	рН	Minimum Resistivity (ohms- cm)
BA-1 @ 0-5 ft	7.4	365
BA-1 @ 5-7 ft	6.8	279

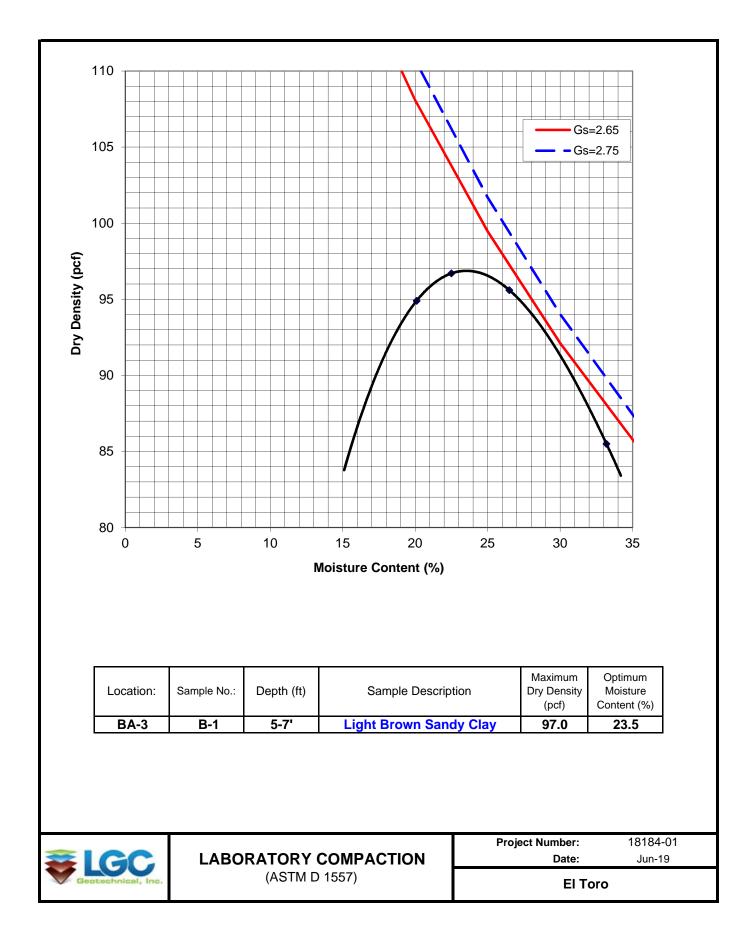











Expansion Classification ¹	High	High		 	
Expansion Index	97	92			
Final Moisture Content (%)	35.0	43.0			
Initial Dry Density (pcf)	110.0	86.8			
Molding Moisture Content (%)	10.5	19.0			
Depth (ft)	0-5'	5-7'			
Sample No.	B-1	B-1			
Location	BA-1	BA-3		 	

18184-01 Jun-19

El Toro

TESTS for SULFATE CONTENT CHLORIDE CONTENT and pH of SOILS

Project Name:	El Toro	Tested By :	OHF/ACS	Date:	05/16/19
Project No. :	18184-01	Input By:	J. Ward	Date:	05/24/19

Boring No.	BA-1	BA-3	
Sample No.	B-1	B-1	
Sample Depth (ft)	0-5	5-7	
Soil Identification:	Dark grayish brown (CL- ML)s	Olive brown CL- ML	
Wet Weight of Soil + Container (g)	0.00	0.00	
Dry Weight of Soil + Container (g)	0.00	0.00	
Weight of Container (g)	1.00	1.00	
Moisture Content (%)	0.00	0.00	
Weight of Soaked Soil (g)	100.39	100.23	

SULFATE CONTENT, DOT California Test 417, Part II

Beaker No.	304	152	
Crucible No.	12	14	
Furnace Temperature (°C)	860	860	
Time In / Time Out	8:45/9:30	8:45/9:30	
Duration of Combustion (min)	45	45	
Wt. of Crucible + Residue (g)	20.7436	19.6927	
Wt. of Crucible (g)	20.7365	19.6826	
Wt. of Residue (g) (A)	0.0071	0.0101	
PPM of Sulfate (A) x 41150	292.17	415.61	
PPM of Sulfate, Dry Weight Basis	292	416	

CHLORIDE CONTENT, DOT California Test 422

ml of Extract For Titration (B)	15	5	
ml of AgNO3 Soln. Used in Titration (C)	2.1	1.5	
PPM of Chloride (C -0.2) * 100 * 30 / B	380	780	
PPM of Chloride, Dry Wt. Basis	380	780	

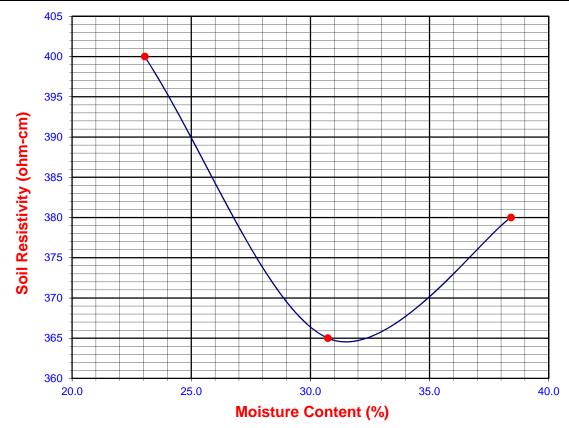
pH TEST, DOT California Test 643

pH Value	7.40	6.80	
Temperature °C	22.3	22.4	

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	El Toro	Tested	d By : O. Figue	roa Date:	05/20/19
Project No. :	18184-01	Input	By: J. Ward	Date:	05/24/19
Boring No.:	BA-1	Depth	(ft.): 0-5		

Sample No. : B-1


Soil Identification:* Dark grayish brown (CL-ML)s

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	30	23.05	400	400
2	40	30.73	365	365
3	50	38.42	380	380
4				
5				

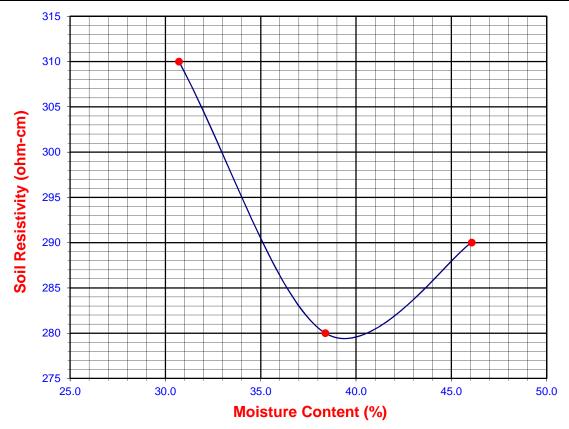
Moisture Content (%) (MCi)	0.00		
	0.00		
Wet Wt. of Soil + Cont. (g)	0.00		
Dry Wt. of Soil + Cont. (g)	0.00		
Wt. of Container (g)	1.00		
Container No.			
Initial Soil Wt. (g) (Wt)	130.15		
Box Constant	1.000		
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
DOT CA	A Test 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA Test 643	
365	31.5	292	380	7.40	22.3

SOIL RESISTIVITY TEST DOT CA TEST 643

Project Name:	El Toro	 Tested By :	O. Figueroa	Date:	05/20/19
Project No. :	18184-01	Input By:	J. Ward	Date:	05/24/19
Boring No.:	BA-3	Depth (ft.) :	5-7		

Sample No. : B-1

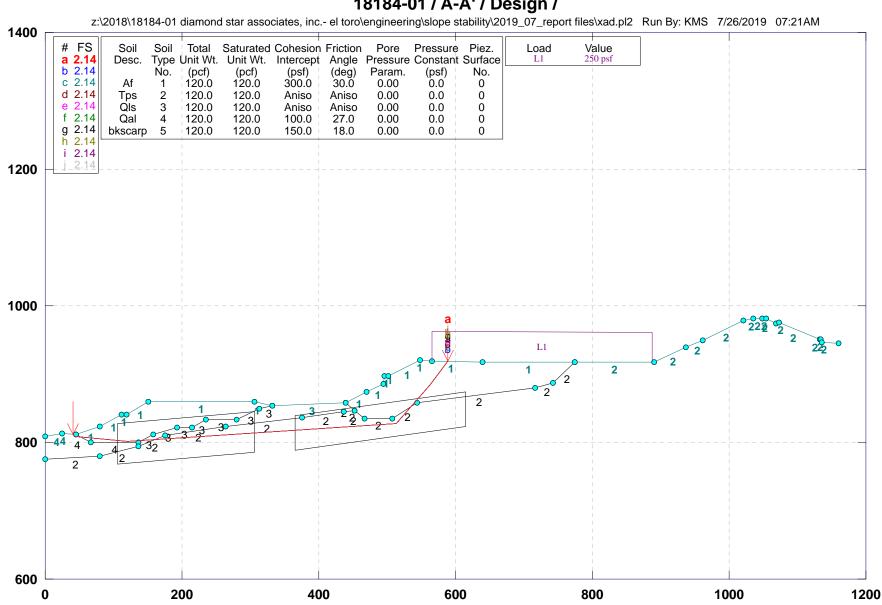

Soil Identification:* Olive brown CL-ML

*California Test 643 requires soil specimens to consist only of portions of samples passing through the No. 8 US Standard Sieve before resistivity testing. Therefore, this test method may not be representative for coarser materials.

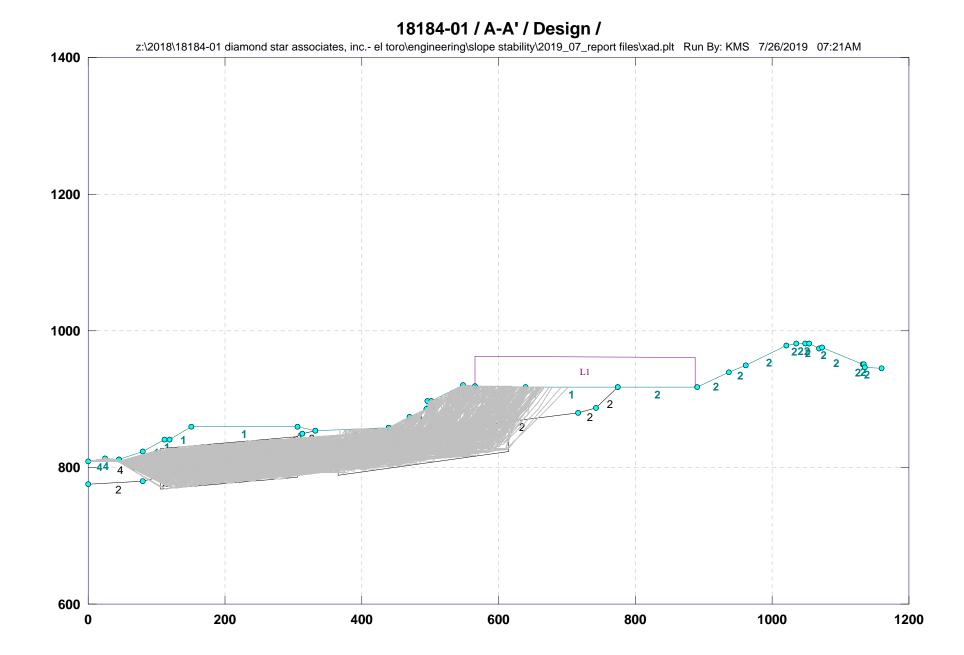
Specimen No.	Water Added (ml) (Wa)	Adjusted Moisture Content (MC)	Resistance Reading (ohm)	Soil Resistivity (ohm-cm)
1	40	30.71	310	310
2	50	38.39	280	280
3	60	46.07	290	290
4				
5				

Moisture Content (%) (MCi)	0.00		
Wet Wt. of Soil + Cont. (g)	0.00		
Dry Wt. of Soil + Cont. (g)	0.00		
Wt. of Container (g)	1.00		
Container No.			
Initial Soil Wt. (g) (Wt)	130.25		
Box Constant	1.000		
MC =(((1+Mci/100)x(Wa/Wt+1))-1)x100			

Min. Resistivity	Moisture Content	Sulfate Content	Chloride Content	So	il pH
(ohm-cm)	(%)	(ppm)	(ppm)	рН	Temp. (°C)
DOT CA	A Test 643	DOT CA Test 417 Part II	DOT CA Test 422	DOT CA	Test 643
279	39.4	416	780	6.80	22.4



Appendix D Slope Stability Analyses


Summary of Slope Stability Analysis

Cross- Section	File Name	Factor of Safety	Description
	xad	2.14	Lower Slope
	xadf	2.14	Lower Slope – Entire Length
	xadkb	2.22	Lower Slope – Behind Keyway
	xadku	2.08	Lower Slope – Below Keyway
	xadr	1.58	Lower Slope – Rotational Static
A-A'	xadre	1.19	Lower Slope – Rotational Seismic
A-A	xaku2	1.52	Upper Slope – Below Keyway
	xaku3	1.57	Upper Slope – Behind Keyway
	xku4	1.70	Upper Slope – Upper Clay Search
	xaku5	1.95	Upper Slope – Upper Clay Search 2
	xakur	1.85	Upper Slope – Rotational Static
	xakure	1.31	Upper Slope – Rotational Seismic
	xbd	2.19	Lower Slope
	xbdf	1.76	Lower Slope – Entire Length
	xbdkb	1.71	Lower Slope – Behind Keyway
B-B'	xbdku	2.01	Lower Slope – Below Keyway
D-D	xbdukb	1.63	Upper Slope – Behind Keyway
	xbduklcb	1.50	Upper Slope – Lower Clay Bed
	xbdukucb	1.52	Upper Slope – Upper Clay Bed
	xbduku	1.60	Upper Slope – Below Keyway
	xck	1.52	Lower Slope – Below Keyway
	xck2	2.42	Lower Slope – Behind Keyway
	xck3	1.77	Lower Slope – Below Keyway
	xck4	1.52	Lower Slope – Below Keyway
C-C'	xcuk	1.56	Upper Slope – Below Keyway
6-6	xcuk3	1.63	Upper Slope – Behind Keyway
	xcuk3b	1.61	Upper Slope – Behind Keyway
	xcuk3c	1.64	Upper Slope – Behind Keyway
	xcuk4	1.73	Upper Slope – Upper Clay Search
	xcukb	1.60	Upper Slope – Below Keyway
	xddvb2	1.54	Design Section – Search
D-D'	xddvb2kb	1.61	Design Section – Behind Keyway
	xddvb2ku	1.62	Design Section – Below Keyway
Generic	-	2.11	Surficial Slope Stability Analysis

18184-01 / A-A' / Design /

GSTABL7 v.2 FSmin=2.14 Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

*** GSTABL7 ***				
** GSTABL7 b	y Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **			
<pre>** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)</pre>				
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			
01011	STABILITY ANALYSIS SYSTEM			
_	implified <u>Janbu</u> , or GLE Method of Slices. & <u>Morgenstern</u> -Price Type Analysis)			
_	e, Reinforcement, Soil Nail, Tieback,			
	d Shear Strength, Curved Phi Envelope,			
	Fiber-Reinforced Soil, Boundary Loads, Water tatic & <u>Newmark</u> Earthquake, and Applied Forces.			

Analysis Run Date:	7/26/2019			
Time of Run:	07:21AM			
Run By:				
KMS				
Input Data Filename:	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\ <u>gstabl</u>			
reports\files\xad.in	C. (Users (<u>kstyter</u> (Desktop (Personal (Scripts (autohotkey (<u>gstabi</u>			
Output Filename:	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\ <u>gstabl</u>			
reports\files\xad.OUT				
Unit System:	English			
Plotted Output Filename:	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\ <u>gstabl</u>			
reports\files\xad.PLT				

PROBLEM DESCRIPTION: 18184-01 / A-A' / Design /

BOUNDARY COORDINATES

30 Top Boundaries
53 Total Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below <u>Bnd</u>
1	0.00	809.00	25.00	813.00	4
2	25.00	813.00	45.00	811.00	4
3	45.00	811.00	80.00	824.00	1
4	80.00	824.00	111.00	840.00	1
5	111.00	840.00	119.00	841.00	1
б	119.00	841.00	151.00	859.00	1
7	151.00	859.00	306.00	860.00	1

8	306.00	860.00	332.00	854.00	1
9	332.00	854.00	439.00	858.00	3
10	439.00	858.00	470.00	874.00	1
11	470.00	874.00	494.00	885.00	1
12	494.00	885.00	496.00	897.00	1
13	496.00	897.00	501.00	897.00	1
14	501.00	897.00	548.00	920.00	1
15	548.00	920.00	565.00	919.00	1
16	565.00	919.00	640.00	918.00	1
17	640.00	918.00	774.00	918.00	1
18	774.00	918.00	890.00	918.00	2
19	890.00	918.00	936.00	940.00	2
20	936.00	940.00	962.00	950.00	2
21	962.00	950.00	1021.00	979.00	2
22	1021.00	979.00	1035.00	981.00	2
23	1035.00	981.00	1048.00	982.00	2
24	1048.00	982.00	1054.00	981.00	2
25	1054.00	981.00	1068.00	974.00	2
26	1068.00	974.00	1073.00	975.00	2
27	1073.00	975.00	1132.00	951.00	2
28	1132.00	951.00	1134.00	951.00	2
29	1134.00	951.00	1136.00	946.00	2
30	1136.00	946.00	1160.00	945.00	2
31	45.00	811.00	66.00	800.00	4
32	66.00	800.00	137.00	800.00	4
33	137.00	800.00	158.00	812.00	3
34	158.00	812.00	193.00	822.00	3
35	193.00	822.00	215.00	822.00	3
36	215.00	822.00	235.00	834.00	3
37	235.00	834.00	280.00	834.00	3
38	280.00	834.00	313.00	849.00	3
39	313.00	849.00	332.00	854.00	3
40	0.00	775.00	80.00	780.00	2
41	80.00	780.00	137.00	795.00	2
42	137.00	795.00	175.00	810.00	2
43	175.00	810.00	264.00	823.00	2
44	264.00	823.00	375.00	837.00	2
45	375.00	837.00	436.00	845.00	2
46	439.00	858.00	452.00	847.00	2
47	436.00	845.00	452.00	847.00	2
48	452.00	847.00	467.00	835.00	2
49	467.00	835.00	507.00	835.00	2
50	507.00	835.00	544.00	858.00	2
51	544.00	858.00	716.00	880.00	2
52	716.00	880.00	742.00	887.00	2
53	742.00	887.00	774.00	918.00	2

User Specified Y-Origin = 600.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)

1

ISOTROPIC SOIL PARAMETERS

5 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Туре	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
-	100.0	100.0		20.0	0 00	0 0	0
1	120.0	120.0	300.0	30.0	0.00	0.0	0

2	120.0	120.0	300.0	30.0	0.00	0.0	0
3	120.0	120.0	300.0	26.0	0.00	0.0	0
4	120.0	120.0	100.0	27.0	0.00	0.0	0
5	120.0	120.0	150.0	18.0	0.00	0.0	0

ANISOTROPIC STRENGTH PARAMETERS 2 soil type(s)

Soil Type 2 Is Anisotropic

Number Of Direction Ranges Specified = 3

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	2.0	300.00	30.00
2	9.0		15.00
3	90.0	300.00	30.00

Soil Type 3 Is Anisotropic

Number Of Direction Ranges Specified = 3

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	2.0	300.00	26.00
2	9.0	100.00	12.00
3	90.0	300.00	26.00

ANISOTROPIC SOIL NOTES:

- An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.
- (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack.
- (3) An input value of 0.03 for Phi will set both Phi and
 - C equal to zero, with water weight in the tension crack.

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	565.00	888.00	250.0	0.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

Janbus Empirical Coef is being used for the case of c & phi both > 0

1

1

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

4999 Trial Surfaces Have Been Generated.

3 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is $\ 75.0$

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	44.00	809.00	44.00	809.00	0.00
2	106.00	798.00	306.00	815.00	60.00
3	365.00	814.00	615.00	849.00	50.00

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method * *

Total Number of Trial Surfaces Attempted = 4999

Number of Trial Surfaces With Valid FS = 4999

Statistical Data On All Valid FS Values: FS Max = 37.120 FS Min = 2.143 FS Ave = 5.046 Standard Deviation = 2.994 Coefficient of Variation = 59.34 %

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
6	587.991	918.693

Factor of Safety *** 2.143 ***

Slice	Width	Weight	Water Force Top	Water Force Bot	Tie Force Norm	Tie Force Tan	Earthqu Forc Hor		charge Load
No.	(ft)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1	2.9	369.7	0.0	0.0	0.	0.	0.0	0.0	0.0
2	1.0	251.7	0.0	0.0	0.	0.	0.0	0.0	0.0
3	4.9	1896.7	0.0	0.0	0.	0.	0.0	0.0	0.0
4	30.1	41188.6	0.0	0.0	0.	0.	0.0	0.0	0.0
5	31.0	103769.0	0.0	0.0	0.	0.	0.0	0.0	0.0
б	8.0	36718.4	0.0	0.0	0.	0.	0.0	0.0	0.0
7	1.1	5442.1	0.0	0.0	0.	0.	0.0	0.0	0.0
8	22.6	123100.7	0.0	0.0	0.	0.	0.0	0.0	0.0
9	8.3	52891.2	0.0	0.0	0.	0.	0.0	0.0	0.0
10	7.0	46183.1	0.0	0.0	0.	0.	0.0	0.0	0.0
11	3.0	19693.4	0.0	0.0	0.	0.	0.0	0.0	0.0
12	14.0	90998.7	0.0	0.0	0.	0.	0.0	0.0	0.0
13	18.0	114938.0	0.0	0.0	0.	0.	0.0	0.0	0.0
14	22.0	137315.6	0.0	0.0	0.	0.	0.0	0.0	0.0
15	20.0	121812.1	0.0	0.0	0.	0.	0.0	0.0	0.0
16	29.0	171518.3	0.0	0.0	0.	0.	0.0	0.0	0.0
17	16.0	92041.9	0.0	0.0	0.	0.	0.0	0.0	0.0
18	26.0	145641.6	0.0	0.0	0.	0.	0.0	0.0	0.0
19	7.0	37683.2	0.0	0.0	0.	0.	0.0	0.0	0.0
20	19.0	93475.4	0.0	0.0	0.	0.	0.0	0.0	0.0
21	43.0	193766.4	0.0	0.0	0.	0.	0.0	0.0	0.0
22	61.0	263841.2	0.0	0.0	0.	0.	0.0	0.0	0.0
23	3.0	12641.8	0.0	0.0	0.	0.	0.0	0.0	0.0
24	13.0	59273.6	0.0	0.0	0.	0.	0.0	0.0	0.0
25	15.0	79726.2	0.0	0.0	0.	0.	0.0	0.0	0.0
26	3.0	17402.5	0.0	0.0	0.	0.	0.0	0.0	0.0
27	24.0	154708.4	0.0	0.0	0.	0.	0.0	0.0	0.0
28	2.0	15445.3	0.0	0.0	0.	0.	0.0	0.0	0.0
29	5.0	42073.8	0.0	0.0	0.	0.	0.0	0.0	0.0
30	6.0	51282.7	0.0	0.0	0.	0.	0.0	0.0	0.0
31	5.9	52515.5	0.0	0.0	0.	0.	0.0	0.0	0.0
32	22.3	181959.1	0.0	0.0	0.	0.	0.0	0.0	0.0
33	12.8	87932.3	0.0	0.0	0.	0.	0.0	0.0	0.0
34	15.2	80792.9	0.0	0.0	0.	0.	0.0	0.0	0.0
35	1.8	7569.2	0.0	0.0	0.	0.	0.0	0.0	0.0
36	23.0	45320.1	0.0	0.0	0.	0.	0.0	0.0	5747.8

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
6	587.991	918.693

Factor of Safety *** 2.143 ***

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
6	587.991	918.693
Fa(***	ctor of Safety 2.143 ***	¢

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
6	587.991	918.693

Factor of Safety *** 2.143 ***

1

Failure Surface Specified By 6 Coordinate Points

X-Surf	Y-Surf
(ft)	(ft)
41.066	811.393
44.000	809.000
120.148	801.762
512.934	827.835
563.156	883.537
587.991	918.693
	(ft) 41.066 44.000 120.148 512.934 563.156

Factor of Safety *** 2.143 ***

Failure Surface Specified By 6 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	41.066	811.393

2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
б	587.991	918.693

Factor of Safety *** 2.143 ***

Failure Surface Specified By 6 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1 2 3 4 5	41.066 44.000 120.148 512.934 563.156 587.991	811.393 809.000 801.762 827.835 883.537 918.693

Factor of Safety *** 2.143 ***

Failure Surface Specified By 6 Coordinate Points

244.000809.003120.148801.76	Point	X-Surf	Y-Surf
	No.	(ft)	(ft)
	2 3 4 5	44.000 120.148 512.934 563.156	811.393 809.000 801.762 827.835 883.537 918.693

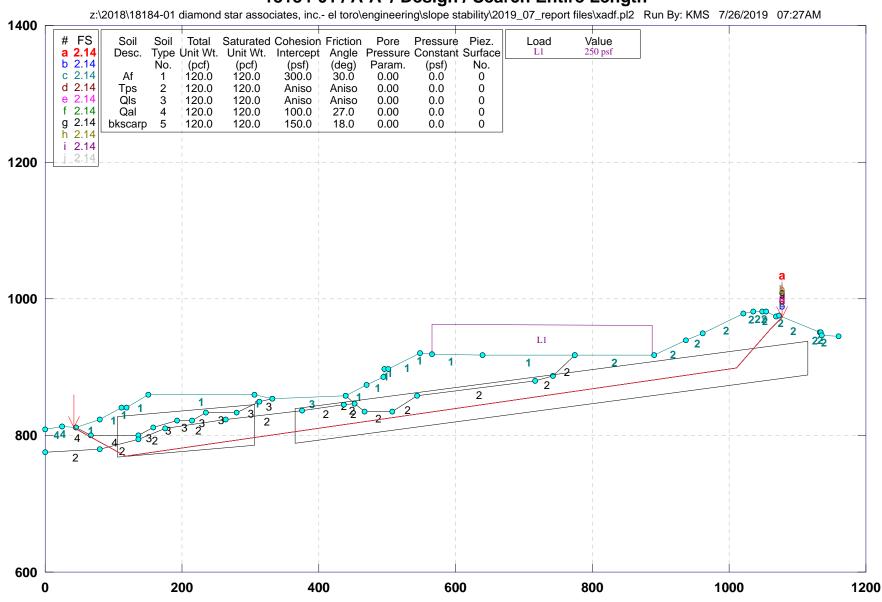
Factor of Safety *** 2.143 ***

1

Failure Surface Specified By 6 Coordinate Points

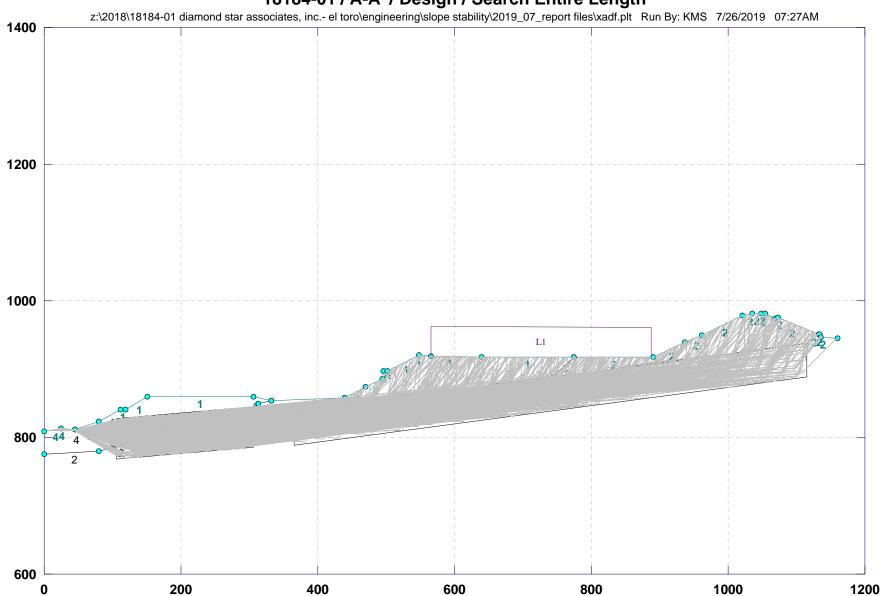
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537

6 587.991 918.693


```
Factor of Safety *** 2.143 ***
```

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	41.066	811.393
2	44.000	809.000
3	120.148	801.762
4	512.934	827.835
5	563.156	883.537
6	587.991	918.693


Factor of Safety *** 2.143 ***

**** END OF GSTABL7 OUTPUT ****

GSTABL7 v.2 FSmin=2.14 Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

18184-01 / A-A' / Design / Search Entire Length

18184-01 / A-A' / Design / Search Entire Length

	*** GSTABL7 ***		
** GSTABL7 b	y Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **		
<pre>** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)</pre>			
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *		
	STABILITY ANALYSIS SYSTEM		
	<pre>implified Janbu, or GLE Method of Slices. & Morgenstern-Price Type Analysis)</pre>		
	e, Reinforcement, Soil Nail, Tieback,		
-	d Shear Strength, Curved Phi Envelope,		
_	Fiber-Reinforced Soil, Boundary Loads, Water		
•	<pre>tatic & Newmark Earthquake, and Applied Forces. ************************************</pre>		
Analysis Run Date: Time of Run: Run By: KMS	7/26/2019 07:27AM		
Input Data Filename: reports\files\ <u>xadf</u> .in	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\gstabl		
Output Filename: reports\files\ <u>xadf</u> .OUT	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\gstabl		
Unit System:	English		
onic bystem.			
Plotted Output Filename: reports\files\ <u>xadf</u> .PLT	C:\Users\ <u>kstyler</u> \Desktop\Personal\Scripts\autoHotKey\g <u>stabl</u>		

PROBLEM DESCRIPTION: 18184-01 / A-A' / Design / Search Entire Length

BOUNDARY COORDINATES

30 Top Boundaries
53 Total Boundaries

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft)	(ft)	Below <u>Bnd</u>
1	0.00	809.00	25.00	813.00	4
2	25.00	813.00	45.00	811.00	4
3	45.00	811.00	80.00	824.00	1
4	80.00	824.00	111.00	840.00	1
5	111.00	840.00	119.00	841.00	1
б	119.00	841.00	151.00	859.00	1
7	151.00	859.00	306.00	860.00	1

8	306.00	860.00	332.00	854.00	1
9	332.00	854.00	439.00	858.00	3
10	439.00	858.00	470.00	874.00	1
11	470.00	874.00	494.00	885.00	1
12	494.00	885.00	496.00	897.00	1
13	496.00	897.00	501.00	897.00	1
14	501.00	897.00	548.00	920.00	1
15	548.00	920.00	565.00	919.00	1
16	565.00	919.00	640.00	918.00	1
17	640.00	918.00	774.00	918.00	1
18	774.00	918.00	890.00	918.00	2
19	890.00	918.00	936.00	940.00	2
20	936.00	940.00	962.00	950.00	2
21	962.00	950.00	1021.00	979.00	2
22	1021.00	979.00	1035.00	981.00	2
23	1035.00	981.00	1048.00	982.00	2
24	1048.00	982.00	1054.00	981.00	2
25	1054.00	981.00	1068.00	974.00	2
26	1068.00	974.00	1073.00	975.00	2
27	1073.00	975.00	1132.00	951.00	2
28	1132.00	951.00	1134.00	951.00	2
29	1134.00	951.00	1136.00	946.00	2
30	1136.00	946.00	1160.00	945.00	2
31	45.00	811.00	66.00	800.00	4
32	66.00	800.00	137.00	800.00	4
33	137.00	800.00	158.00	812.00	3
34	158.00	812.00	193.00	822.00	3
35	193.00	822.00	215.00	822.00	3
36	215.00	822.00	235.00	834.00	3
37	235.00	834.00	280.00	834.00	3
38	280.00	834.00	313.00	849.00	3
39	313.00	849.00	332.00	854.00	3
40	0.00	775.00	80.00	780.00	2
41	80.00	780.00	137.00	795.00	2
42	137.00	795.00	175.00	810.00	2
43	175.00	810.00	264.00	823.00	2
44	264.00	823.00	375.00	837.00	2
45	375.00	837.00	436.00	845.00	2
46	439.00	858.00	452.00	847.00	2
47	436.00	845.00	452.00	847.00	2
48	452.00	847.00	467.00	835.00	2
49	467.00	835.00	507.00	835.00	2
50	507.00	835.00	544.00	858.00	2
51	544.00	858.00	716.00	880.00	2
52	716.00	880.00	742.00	887.00	2
53	742.00	887.00	774.00	918.00	2

User Specified Y-Origin = 600.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)

1

ISOTROPIC SOIL PARAMETERS

5 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez.
Туре	Unit Wt.	Unit Wt.	Intercept	Angle	Pressure	Constant	Surface
No.	(pcf)	(pcf)	(psf)	(deg)	Param.	(psf)	No.
-	100.0	100.0		20.0	0 00	0 0	0
1	120.0	120.0	300.0	30.0	0.00	0.0	0

2	120.0	120.0	300.0	30.0	0.00	0.0	0
3	120.0	120.0	300.0	26.0	0.00	0.0	0
4	120.0	120.0	100.0	27.0	0.00	0.0	0
5	120.0	120.0	150.0	18.0	0.00	0.0	0

ANISOTROPIC STRENGTH PARAMETERS 2 soil type(s)

Soil Type 2 Is Anisotropic

Number Of Direction Ranges Specified = 3

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	2.0	300.00	30.00
2	9.0		15.00
3	90.0	300.00	30.00

Soil Type 3 Is Anisotropic

Number Of Direction Ranges Specified = 3

Direction	Counterclockwise	Cohesion	Friction
Range	Direction Limit	Intercept	Angle
No.	(deg)	(psf)	(deg)
1	2.0	300.00	26.00
2	9.0	100.00	12.00
3	90.0	300.00	26.00

ANISOTROPIC SOIL NOTES:

- An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range.
- (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack.
- (3) An input value of 0.03 for Phi will set both Phi and
 - C equal to zero, with water weight in the tension crack.

BOUNDARY LOAD(S)

1 Load(s) Specified

Load	X-Left	X-Right	Intensity	Deflection
No.	(ft)	(ft)	(psf)	(deg)
1	565.00	888.00	250.0	0.0

NOTE - Intensity Is Specified As A Uniformly Distributed Force Acting On A Horizontally Projected Surface.

Janbus Empirical Coef is being used for the case of c & phi both > 0

1

1

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified.

4999 Trial Surfaces Have Been Generated.

3 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is $\ 75.0$

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	44.00	810.00	44.00	810.00	0.00
2	106.00	798.00	306.00	815.00	60.00
3	365.00	814.00	1115.00	913.00	50.00

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method * *

Total Number of Trial Surfaces Attempted = 4999

Number of Trial Surfaces With Valid FS = 4999

Statistical Data On All Valid FS Values: FS Max = 22.283 FS Min = 2.141 FS Ave = 3.969 Standard Deviation = 2.075 Coefficient of Variation = 52.29 %

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2	42.722 44.000	811.228 810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
б	1077.954	972.985

Factor of Safety *** 2.141 ***

			Water Force	Water Force	Tie Force	Tie Force	Earthqu Forc	e Suro	charge
Slice No.	Width (ft)	Weight (lbs)	Top (lbs)	Bot (lbs)	Norm (lbs)	Tan (lbs)	Hor (lbs)	Ver (lbs)	Load (lbs)
1	1.3	84.3	0.0	0.0	0.	0.	0.0	0.0	0.0
2	1.0	158.6	0.0	0.0	0.	0.	0.0	0.0	0.0
3	21.0	28084.8	0.0	0.0	0.	0.	0.0	0.0	0.0
4	14.0	45608.1	0.0	0.0	0.	0.	0.0	0.0	0.0
5 6	13.0 18.0	62870.2	0.0	0.0	0.	0.	0.0	0.0	0.0
6 7	18.0 6.8	123002.2 56057.4	0.0 0.0	0.0 0.0	0. 0.	0. 0.	0.0 0.0	0.0	0.0 0.0
8	1.2	10176.2	0.0	0.0	0.	0.	0.0	0.0	0.0
8 9	18.0	161283.6	0.0	0.0	0.	0.	0.0	0.0	0.0
10	14.0	136683.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11	7.0	70395.0	0.0	0.0	0.	0.	0.0	0.0	0.0
12	17.0	167583.8	0.0	0.0	0.	0.	0.0	0.0	0.0
13	18.0	172229.7	0.0	0.0	0.	0.	0.0	0.0	0.0
14	22.0	203222.6	0.0	0.0	0.	0.	0.0	0.0	0.0
15	20.0	177798.5	0.0	0.0	0.	0.	0.0	0.0	0.0
16	29.0	246052.0	0.0	0.0	0.	0.	0.0	0.0	0.0
17	16.0	129796.2	0.0	0.0	0.	0.	0.0	0.0	0.0
18	26.0	201884.8	0.0	0.0	0.	0.	0.0	0.0	0.0
19	7.0	51745.1	0.0	0.0	0.	0.	0.0	0.0	0.0
20	19.0	129332.8	0.0	0.0	0.	0.	0.0	0.0	0.0
21	43.0	262447.6	0.0	0.0	0.	0.	0.0	0.0	0.0
22	61.0	331599.5	0.0	0.0	0.	0.	0.0	0.0	0.0
23	3.0	15076.1	0.0	0.0	0.	0.	0.0	0.0	0.0
24	13.0	68849.4	0.0	0.0	0.	0.	0.0	0.0	0.0
25	15.0	88810.7	0.0	0.0	0.	0.	0.0	0.0	0.0
26	3.0	18966.8	0.0	0.0	0.	0.	0.0	0.0	0.0
27	24.0	164192.0	0.0	0.0	0.	0.	0.0	0.0	0.0
28	2.0	15992.3	0.0	0.0	0.	0.	0.0	0.0	0.0
29	5.0	43277.7	0.0	0.0	0.	0.	0.0	0.0	0.0
30	6.0	52418.8	0.0	0.0	0.	0.	0.0	0.0	0.0
31	37.0	356185.3	0.0	0.0	0.	0.	0.0	0.0	0.0
32	4.0	41901.6	0.0	0.0	0.	0.	0.0	0.0	0.0
33	17.0	175966.6	0.0	0.0	0.	0.	0.0	0.0	0.0
34 25	75.0	707568.4	0.0 0.0	0.0	0.		0.0	0.0	
35 36	76.0 26.0	613058.9 186764.1	0.0	0.0 0.0	0.	0. 0.	0.0 0.0	0.0	19000.0 6500.0
30	32.0	213790.3	0.0	0.0	0.		0.0	0.0	
38	114.0	617488.7	0.0	0.0	0.		0.0	0.0	
39	2.0	8824.0	0.0	0.0	0.		0.0	0.0	28500.0
40	46.0	244550.1	0.0	0.0	0.		0.0	0.0	0.0
41	26.0	171932.3	0.0	0.0	0.		0.0	0.0	0.0
42	49.0	391960.8	0.0	0.0	0.	0.	0.0	0.0	0.0
43	10.0	86768.2	0.0	0.0	0.	0.	0.0	0.0	0.0
44	14.0	103604.8	0.0	0.0	0.	0.	0.0	0.0	0.0
45	13.0	74463.5	0.0	0.0	0.	0.	0.0	0.0	0.0
46	6.0	26546.7	0.0	0.0	0.	0.	0.0	0.0	0.0
	6.3	21053.6	0.0	0.0	0.	0.	0.0	0.0	0.0
48	7.7	15453.3	0.0	0.0	0.	0.	0.0	0.0	0.0
49	5.0	5397.8	0.0	0.0	0.		0.0	0.0	0.0
50	5.0	2077.0	0.0	0.0	0.	0.	0.0	0.0	0.0

Failure Surface Specified By 6 Coordinate Points

X-Surf	Y-Surf
(ft)	(ft)
42.722	811.228
44.000	810.000
117.804	769.923
	(ft) 42.722 44.000

4	1010.950	898.835
5	1060.324	955.291
6	1077.954	972.985

Factor of Safety *** 2.141 ***

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	40 700	011 000
1 2	42.722 44.000	811.228 810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
6	1077.954	972.985

Factor of Safety *** 2.141 ***

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2	42.722 44.000	811.228 810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
б	1077.954	972.985

Factor of Safety *** 2.141 ***

1

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	42.722	811.228
2	44.000	810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
6	1077.954	972.985

Factor of Safety *** 2.141 ***

Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1 2	42.722 44.000	811.228 810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
6	1077.954	972.985

Factor of Safety *** 2.141 ***

Failure Surface Specified By 6 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	42.722	811.228
2	44.000	810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
6	1077.954	972.985

Factor of Safety *** 2.141 ***

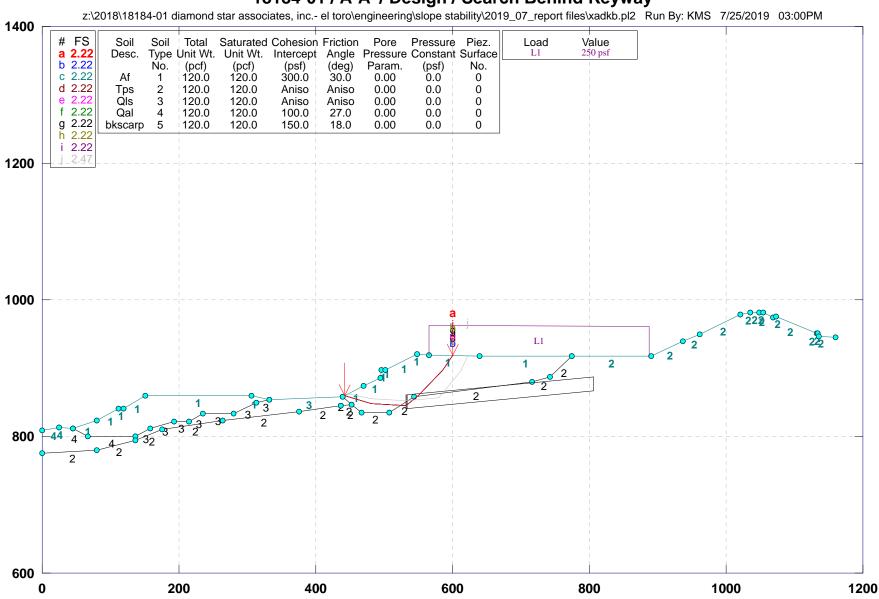
Failure Surface Specified By 6 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	42.722	811.228
2	44.000	810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
б	1077.954	972.985

Factor of Safety *** 2.141 ***

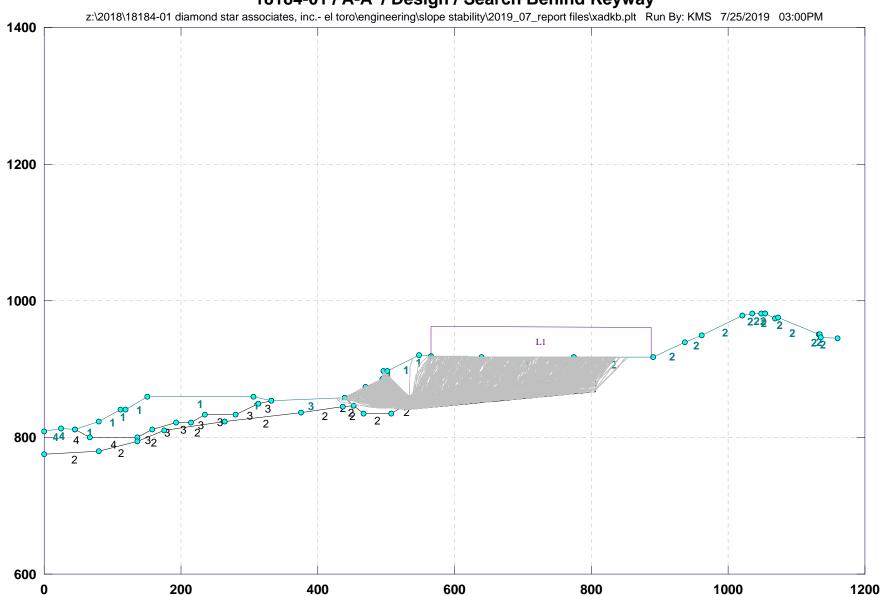
Failure Surface Specified By 6 Coordinate Points

Point No.	X-Surf (ft)	Y-Surf (ft)
1	42.722	811.228
2	44.000	810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
б	1077.954	972.985


Factor of Safety *** 2.141 ***

Failure Surface Specified By 6 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	42.722	811.228
2	44.000	810.000
3	117.804	769.923
4	1010.950	898.835
5	1060.324	955.291
б	1077.954	972.985


Factor of Safety *** 2.141 ***

**** END OF GSTABL7 OUTPUT ****

GSTABL7 v.2 FSmin=2.22 Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

18184-01 / A-A' / Design / Search Behind Keyway

18184-01 / A-A' / Design / Search Behind Keyway

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 7/25/2019 Time of Run: 03:00PM Run By: KMS Input Data Filename: Z:\2018\18184-01 Diamond Star Associates, Inc.- El Toro\Engineering\Slope Stability\Sec $A \geq 019_07_xa \times dkb.in$ Output Filename: Z:\2018\18184-01 Diamond Star Associates, Inc.- El Toro\Engineering\Slope Stability\Sec A\2019_07_xa\xadkb.OUT Unit System: English Plotted Output Filename: Z:\2018\18184-01 Diamond Star Associates, Inc.- El Toro\Engineering\Slope Stability\Sec $A \geq 019_07_xa \geq 0.PLT$ PROBLEM DESCRIPTION: 18184-01 / A-A' / Design / Search Behind Keyway BOUNDARY COORDINATES 30 Top Boundaries 53 Total Boundaries Boundary X-Right X-Left Y-Left Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below <u>Bnd</u> 1 0.00 809.00 25.00 813.00 4 2 25.00 813.00 45.00 811.00 4 824.00 3 45.00 811.00 80.00 1 4 111.00 840.00 80.00 824.00 1

5

б

7

111.00

119.00

151.00

840.00

841.00

859.00

119.00

151.00

306.00

841.00

859.00

860.00

1

1

1

*** GSTABL7 ***